

Definition

“An operator is a symbol (+,-,*,/) that directs the computer to
perform certain mathematical or logical manipulations and is
usually used to manipulate data and variables”

Ex: a+b

Operators in C
1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Increment and decrement operators

6. Conditional operators

7. Bitwise operators

8. Special operators

Arithmetic operators

Operator example Meaning

+ a + b Addition –unary

- a – b Subtraction- unary

* a * b Multiplication

/ a / b Division

% a % b Modulo division- remainder

Relational Operators

Operator Meaning

< Is less than

<= Is less than or equal to

> Is greater than

>= Is greater than or equal to

== Equal to

!= Not equal to

Logical Operators

Operator Meaning

&& Logical AND

|| Logical OR

! Logical NOT

Logical expression or a compound relational

expression-

An expression that combines two or more

relational expressions

Ex: if (a==b && b==c)

Truth Table

a b
Value of the expression

a && b a || b

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Assignment operators
Syntax:

 v op = exp;

Where v = variable,

 op = shorthand assignment operator

 exp = expression

Ex: x=x+3

 x+=3

Shorthand Assignment operators

Simple assignment

operator
Shorthand operator

a = a+1 a + =1

a = a-1 a - =1

a = a* (m+n) a * = m+n

a = a / (m+n) a / = m+n

a = a %b a %=b

Increment & Decrement Operators
C supports 2 useful operators namely

1. Increment ++

2. Decrement – operators

The ++ operator adds a value 1 to the operand

The – operator subtracts 1 from the operand

++a or a++

--a or a--

Rules for ++ & -- operators

1. These require variables as their operands

2. When postfix either ++ or – is used with the
variable in a given expression, the expression is
evaluated first and then it is incremented or
decremented by one

3. When prefix either ++ or – is used with the
variable in a given expression, it is incremented
or decremented by one first and then the
expression is evaluated with the new value

Examples for ++ & -- operators
Let the value of a =5 and b=++a then
a = b =6
Let the value of a = 5 and b=a++ then
a =5 but b=6
i.e.:
1. a prefix operator first adds 1 to the operand and

then the result is assigned to the variable on the
left

2. a postfix operator first assigns the value to the
variable on left and then increments the operand.

Conditional operators
Syntax:

exp1 ? exp2 : exp3

Where exp1,exp2 and exp3 are expressions

Working of the ? Operator:

Exp1 is evaluated first, if it is nonzero(1/true) then the expression2 is
evaluated and this becomes the value of the expression,

If exp1 is false(0/zero) exp3 is evaluated and its value becomes the value
of the expression

Ex: m=2;

 n=3

 r=(m>n) ? m : n;

Bitwise operators
 These operators allow manipulation of data at the bit level

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

<< Shift left

>> Shift right

Special operators
1. Comma operator (,)

2. sizeof operator – sizeof()

3. Pointer operators – (& and *)

4. Member selection operators – (. and ->)

Arithmetic Expressions
 Algebraic expression C expression

axb-c a*b-c

(m+n)(x+y) (m+n)*(x+y)

a*b/c

3x2+2x+1 3*x*x+2*x+1

a/b

S=(a+b+c)/2

c

ab

b

a

2

cba
S=

Arithmetic Expressions
 Algebraic expression C expression

area= area=sqrt(s*(s-a)*(s-b)*(s-c))

 sin(b/sqrt(a*a+b*b))

tow1=sqrt((rowx-rowy)/2+tow*x*y*y)

tow1=sqrt(pow((rowx-rowy)/2,2)+tow*x*y*y)

y=(alpha+beta)/sin(theta*3.1416/180)+abs(x)

))()((csbsass

Sin

 22 ba

b

2

1
2

xy
yx

2

2

1
2

xy
yx

xy

sin

Precedence of operators

BODMAS RULE-
Brackets of Division Multiplication Addition Subtraction
Brackets will have the highest precedence and have to be
evaluated first, then comes of , then comes
division, multiplication, addition and finally subtraction.
C language uses some rules in evaluating the expressions
and they r called as precedence rules or sometimes also
referred to as hierarchy of operations, with some operators
with highest precedence and some with least.
The 2 distinct priority levels of arithmetic operators in c are-
Highest priority : * / %
Lowest priority : + -

Rules for evaluation of expression
1. First parenthesized sub expression from left to right are evaluated.

2. If parentheses are nested, the evaluation begins with the innermost
sub expression

3. The precedence rule is applied in determining the order of
application of operators in evaluating sub expressions

4. The associatively rule is applied when 2 or more operators of the
same precedence level appear in a sub expression.

5. Arithmetic expressions are evaluated from left to right using the
rules of precedence

6. When parentheses are used, the expressions within parentheses
assume highest priority

Hierarchy of operators

Operator Description Associativity

(), [] Function call, array

element reference
Left to Right

+, -, ++, - -

,!,~,*,&

Unary plus, minus,

increment, decrement,

logical negation, 1’s

complement, pointer

reference, address

Right to Left

*, / , % Multiplication,

division, modulus

Left to Right

Example 1

Evaluate x1=(-b+ sqrt (b*b-4*a*c))/(2*a) @ a=1, b=-5, c=6

=(-(-5)+sqrt((-5)(-5)-4*1*6))/(2*1)

=(5 + sqrt((-5)(-5)-4*1*6))/(2*1)

=(5 + sqrt(25 -4*1*6))/(2*1)

=(5 + sqrt(25 -4*6))/(2*1)

=(5 + sqrt(25 -24))/(2*1)

=(5 + sqrt(1))/(2*1)

=(5 + 1.0)/(2*1)

=(6.0)/(2*1)

=6.0/2 = 3.0

Example 2
Evaluate the expression when a=4

b=a- ++a

=a – 5

=5-5

=0

