File Handling in C



What is a File?

A file is a collection of related data that a computers
treats as a single unit.

Computers store files to secondary storage so that
the contents of files remain intact when a computer
turns off.

When a computer reads a file, it copies the file from
the storage device to memory; when it writes to a
file, it transfers data from memory to the storage
device.

C uses a structure called FILE (defined in
stdio.h) to store the attributes of a file.



Steps in Processing a File

1. Create the stream via a pointer variable using
the FILE structure:
FILE *p;

2. Open the file, associating the stream name
with the file name.

3. Read or write the data.
4. Close the file.



The basic file operations are

fopen - open a file- specify how its opened
(read/write) and type (binary/text)

fclose - close an opened file
fread - read from a file
fwrite - write to a file

fseek/fsetpos - move a file pointer to somewhere in a
file.

ftell/fgetpos - tell you where the file pointer is
located.



File Open Modes

r Open text file in read mode
e |f file exists, the marker is positioned at beginning.
o |f file doesn’t exist, error returned.

W Open text file in write mode
o |f file exists, it is erased.
o |f file doesn’t exist, it is created.

a Open text file in append mode
e |f file exists, the marker is positioned at end.
o |f file doesn’t exist, it is created.




More on File Open Modes
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Additionally,

“r+” (read + write) In this mode we can also write
and modify existing data .The file to be opened must
exist and the previous data of file is not erased . This
mode is also called update mode.

“w+“(write + read) If the file doesn’t exist then a new
file is created and if the file exists than the previous
data is erased.

“a+”(append + read) In this mode we can append as
well as read the existing file .



A structure named FILE is defined in the file
stdio.h that contains all the information about
file like :

1)Name of file

11)Status

111) Buffer size

1v)current position

v)end of file status



File Open

* The file open function (fopen) serves two
purposes:

— It makes the connection between the physical file
and the stream.

— It creates “a program file structure to store the
information” .

* Syntax:



More On fopen

* On success fopen() returns a pointer of type
FILE and on error it returns NULL.

* We assign the return value of fopen to our
pointer variable:

FILE *p1;

pl=fopen(“MYFILE.TXT”, “w”);
pl=fopen(“A:\\DOCUMENTS\\MYFILE.TXT”, “w”);



Errors in fopen

* If an error occurs in opening a file ,then fopen()
returns NULL.

FILE *p;
p=topen(“abc.txt”, ’r”);
1f(p==NULL)

d
printf(“Error in opening file”);
exit(1);



Errors may occur due to following
reasons

If we try to open a file in read mode and If the file

doesn’t exists or we do not have read permission on
that file.

If we try to create a file but there 1s no space on disk
or we don’t have write permissions.

If we try to create a file that already exists and we
don’t have permission to delete that file.

Operating system limits the number of files that can
be opened at a time and we are trying to open more
files than that number.



Closing a File

* When we finish with a mode, we need to close
the file before ending the program or
beginning another mode with that same file.

 To close a file, we use £close and the

pointer variable:
fclose(pl) ;



fprintf()

fprintf (fp,"string",variables);

inti=12;

float x = 2.356;

charch="'s;

FILE *fp;
fp=fopen(“out.txt”,”w"”);
fprintf (fp, "%d %f %c", i, x, ch);



fscanf()

fscanf (fp,"string",identifiers);

FILE *fp;
Fp=fopen(“input.txt”,’r”);
int i;

fscanf (fp,“%d",i);



getc()

identifier = getc (file pointer);

FILE *fp;
fp=fopen(“input.txt”,
char ch;

ch = getc (fp);

7”0 II)



putc()

write a single character to the output file,
pointed to by fp.

FILE *fp;
char ch;
putc (ch,fp);



End of File

* There are a number of ways to test for the end-of-file
condition. Another way is to use the value returned by the
fscanf function:

FILE *fptr1;

int istatus ;

istatus = fscanf (fptrl, "%d", &var) ;
if (istatus == feof(fptrl) )

{

printf ("End-of-file encountered.\n”) ;



Reading and Writing Files

#include <stdio.h>

int main ()

{
FILE *outfile, *infile ;
intb=5,f;

floata=13.72,c=6.68, e g ;
outfile = fopen ("testdata”, "w") ;

fprintf (outfile, “ %f %d %f ", a, b, c) ;
fclose (outfile) ;

infile = fopen ("testdata", "r") ;
fscanf (infile,"%f %d %f", &e, &f, &g) ;
printf (“ %f %d %f\n ", a, b, c) ;

printf (“ %f %d %f\n ", e, f, g) ;



#include <stdio.h>
#include<conio.h>

void main()

{
char ch;
FILE *fp;

fp=fopen("out.txt","r");
while(!feof(fp))
{
ch=getc(fp);
printf("\n%c",ch);
}
getch();

Example



fread ()

Declaration:

Remarks:
fread reads a specified number of equal-sized
data items from an input stream into a block.

ptr = Points to a block into which data is read
size = Length of each item read, in bytes
n = Number of items read

stream = file pointer



Example

Example:
#include <stdio.h>
int main()
{
FILE *f;
char buffer[11];
if (f = fopen("fred.txt", “r”))
{
fread(buffer, 1, 10, f);
buffer[10] = 0;
fclose(f);
printf("first 10 characters of the file:\n%s\n", buffer);

}

return O;

}



fwrite()

Declaration:
size_t fwrite(const void *ptr, size_t size, size_t n, FILE*stream);

Remarks:
fwrite appends a specified number of equal-sized data items to an output file.

ptr = Pointer to any object; the data written begins at ptr
size = Length of each item of data
n =Number of data items to be appended

stream = file pointer



Example

Example:

#include <stdio.h>
int main()

{
char a[10]={"1",'2','3",'4",'5','6','7",'8','9","'a"};
FILE *fs;
fs=fopen("Project.txt","w");
fwrite(a,1,10,fs);
fclose(fs);
return O;



fseek()

This function sets the file position indicator for the stream pointed to by stream or you can
say it seeks a specified place within a file and modify it.

SEEK_SET Seeks from beginning of file
SEEK_CUR Seeks from current position
SEEK_END Seeks from end of file
Example:
#include <stdio.h>
int main()
{
FILE * f;

f = fopen("myfile.txt", "w");

fputs("Hello World", f);

fseek(f, 6, SEEK_SET);  SEEK_CUR, SEEK_END
fputs(" India", f);

fclose(f);

return O;



ftell()

offset = ftell( file pointer );

"ftell" returns the current position for input or output on the file
#include <stdio.h>

int main(void)
{
FILE *stream;
stream = fopen("MYFILETXT", "w");
fprintf(stream, "This is a test");
printf("The file pointer is at byte %ld\n", ftell(stream));
fclose(stream);
return O;



