
File Handling in C

What is a File?

• A file is a collection of related data that a computers
treats as a single unit.

• Computers store files to secondary storage so that
the contents of files remain intact when a computer
turns off.

• When a computer reads a file, it copies the file from
the storage device to memory; when it writes to a
file, it transfers data from memory to the storage
device.

• C uses a structure called FILEFILE (defined in
stdio.hstdio.h) to store the attributes of a file.

Steps in Processing a File

1. Create the stream via a pointer variable using
the FILEFILE structure:
FILE *p;FILE *p;

2. Open the file, associating the stream name
with the file name.

3. Read or write the data.

4. Close the file.

The basic file operations are

• fopen - open a file- specify how its opened

(read/write) and type (binary/text)
• fclose - close an opened file
• fread - read from a file
• fwrite - write to a file
• fseek/fsetpos - move a file pointer to somewhere in a

file.
• ftell/fgetpos - tell you where the file pointer is

located.

File Open Modes

More on File Open Modes

Additionally,

• “r+” (read + write) In this mode we can also write
and modify existing data .The file to be opened must
exist and the previous data of file is not erased . This
mode is also called update mode.

• “w+“(write + read) If the file doesn’t exist then a new
file is created and if the file exists than the previous
data is erased.

• “a+”(append + read) In this mode we can append as
well as read the existing file .

A structure named FILE is defined in the file

stdio.h that contains all the information about

file like :

 i)Name of file

 ii)Status

 iii)Buffer size

 iv)current position

 v)end of file status

File Open

• The file open function (fopenfopen) serves two
purposes:
– It makes the connection between the physical file

and the stream.

– It creates “a program file structure to store the
information” .

• Syntax:
FILE*FILE*fopenfopen(“filename”, “mode”);(“filename”, “mode”);

More On fopen

• On success fopen() returns a pointer of type
FILE and on error it returns NULL.

• We assign the return value of fopenfopen to our
pointer variable:

 FILE *p1;
p1= p1= fopenfopen(“MYFILE.TXT”, “w”);(“MYFILE.TXT”, “w”);

p1= p1= fopenfopen(“A:(“A:\\\\DOCUMENTSDOCUMENTS\\\\MYFILE.TXT”, “w”);MYFILE.TXT”, “w”);

Errors in fopen

• If an error occurs in opening a file ,then fopen()

returns NULL.

 FILE *p;

 p=fopen(“abc.txt”, ”r”);

 if(p==NULL)

{

 printf(“Error in opening file”);

 exit(1);

}

Errors may occur due to following

reasons

• If we try to open a file in read mode and If the file

doesn’t exists or we do not have read permission on

that file.

• If we try to create a file but there is no space on disk

or we don’t have write permissions.

• If we try to create a file that already exists and we

don’t have permission to delete that file.

• Operating system limits the number of files that can

be opened at a time and we are trying to open more

files than that number.

Closing a File

• When we finish with a mode, we need to close
the file before ending the program or
beginning another mode with that same file.

• To close a file, we use fclosefclose and the
pointer variable:
fclosefclose(p1);(p1);

fprintf()

Syntax:Syntax:
 fprintf (fp,"string",variables);
Example:Example:

int i = 12;
float x = 2.356;
char ch = 's';
FILE *fp;
fp=fopen(“out.txt”,”w”);
fprintf (fp, "%d %f %c", i, x, ch);

fscanf()

Syntax:Syntax:

 fscanf (fp,"string",identifiers);

Example:Example:
FILE *fp;

Fp=fopen(“input.txt”,”r”);

int i;

fscanf (fp,“%d",i);

getc()

Syntax:Syntax:

identifier = getc (file pointer);

Example:Example:

FILE *fp;

fp=fopen(“input.txt”,”r”);

char ch;

ch = getc (fp);

putc()
write a single character to the output file,

pointed to by fp.

Example:Example:

FILE *fp;

char ch;

putc (ch,fp);

End of File

• There are a number of ways to test for the end-of-file
condition. Another way is to use the value returned by the
fscanffscanf function:

 FILE *fptr1;
 int istatus ;
 istatus = fscanf (fptr1, "%d", &var) ;

 if (istatus == feof(fptr1))

 {

 printf ("End-of-file encountered.\n”) ;

 }

Reading and Writing Files
#include <stdio.h>
int main ()
{
 FILE *outfile, *infile ;
 int b = 5, f ;
 float a = 13.72, c = 6.68, e, g ;
 outfile = fopen ("testdata", "w") ;
 fprintf (outfile, “ %f %d %f ", a, b, c) ;
 fclose (outfile) ;
 infile = fopen ("testdata", "r") ;
 fscanf (infile,"%f %d %f", &e, &f, &g) ;
 printf (“ %f %d %f \n ", a, b, c) ;
 printf (“ %f %d %f \n ", e, f, g) ;
}

Example

#include <stdio.h>
#include<conio.h>
void main()
{

char ch;
FILE *fp;
fp=fopen("out.txt","r");
while(!feof(fp))

{
ch=getc(fp);
printf("\n%c",ch);

}
getch();

 }

fread ()

Declaration:
 size_t fread(void *ptr, size_t size, size_t n, FILE *stream);size_t fread(void *ptr, size_t size, size_t n, FILE *stream);

 Remarks:
fread reads a specified number of equal-sized
data items from an input stream into a block.

 ptr = Points to a block into which data is read
 size = Length of each item read, in bytes
 n = Number of items read
 stream = file pointer

Example

Example:Example:
#include <stdio.h>
int main()
{
 FILE *f;
 char buffer[11];
 if (f = fopen("fred.txt", “r”))
 {
 fread(buffer, 1, 10, f);
 buffer[10] = 0;
 fclose(f);
 printf("first 10 characters of the file:\n%s\n", buffer);
 }
 return 0;
}

fwrite()

Declaration:
 size_tsize_t fwritefwrite(const void *(const void *ptrptr, , size_tsize_t size, size, size_tsize_t n, FILE*stream);n, FILE*stream);

 Remarks:
fwrite appends a specified number of equal-sized data items to an output file.

 ptrptr = Pointer to any object; the data written begins at = Pointer to any object; the data written begins at ptrptr
 size = Length of each item of datasize = Length of each item of data
 n =Number of data items to be appendedn =Number of data items to be appended
 stream = file pointerstream = file pointer

Example

Example:Example:
#include <stdio.h>
int main()
{

char a[10]={'1','2','3','4','5','6','7','8','9','a'};
FILE *fs;
fs=fopen("Project.txt","w");
fwrite(a,1,10,fs);
fclose(fs);
return 0;

}

fseek()

 This function sets the file position indicator for the stream pointed to by stream or you can
say it seeks a specified place within a file and modify it.

 SEEK_SET SEEK_SET Seeks from beginning of fileSeeks from beginning of file
 SEEK_CUR SEEK_CUR Seeks from current positionSeeks from current position
 SEEK_END SEEK_END Seeks from end of fileSeeks from end of file

Example:Example:
#include <stdio.h>
int main()
 {

 FILE * f;
 f = fopen("myfile.txt", "w");
 fputs("Hello World", f);
 fseek(f, 6, SEEK_SET); SEEK_CUR, SEEK_END
 fputs(" India", f);
 fclose(f);
 return 0;
}

ftell()

offset = offset = ftellftell(file pointer); (file pointer);

 "ftell" returns the current position for input or output on the file
 #include <stdio.h>

int main(void)
{
 FILE *stream;
 stream = fopen("MYFILE.TXT", "w");
 fprintf(stream, "This is a test");
 printf("The file pointer is at byte %ld\n", ftell(stream));
 fclose(stream);
 return 0;
}

