File Handling in C

What is a File?

A file is a collection of related data that a computers
treats as a single unit.

Computers store files to secondary storage so that
the contents of files remain intact when a computer
turns off.

When a computer reads a file, it copies the file from
the storage device to memory; when it writes to a
file, it transfers data from memory to the storage
device.

C uses a structure called FILE (defined in
stdio.h) to store the attributes of a file.

Steps in Processing a File

1. Create the stream via a pointer variable using
the FILE structure:
FILE *p;

2. Open the file, associating the stream name
with the file name.

3. Read or write the data.
4. Close the file.

The basic file operations are

fopen - open a file- specify how its opened
(read/write) and type (binary/text)

fclose - close an opened file
fread - read from a file
fwrite - write to a file

fseek/fsetpos - move a file pointer to somewhere in a
file.

ftell/fgetpos - tell you where the file pointer is
located.

File Open Modes

r Open text file in read mode
e |f file exists, the marker is positioned at beginning.
o |f file doesn’t exist, error returned.

W Open text file in write mode
o |f file exists, it is erased.
o |f file doesn’t exist, it is created.

a Open text file in append mode
e |f file exists, the marker is positioned at end.
o |f file doesn’t exist, it is created.

More on File Open Modes

Open existing file
for reading

Open new file
for writing

EQOF

File marker
positioned at
beginning of file

(a) Read Mode

EOF

N\

Open
existing file for writing
or create new file

File marker

positioned at
beginning of file

(b) Write Mode

File marker
positioned at
end of file

(c) Append Mode

Additionally,

“r+” (read + write) In this mode we can also write
and modify existing data .The file to be opened must
exist and the previous data of file is not erased . This
mode is also called update mode.

“w+“(write + read) If the file doesn’t exist then a new
file is created and if the file exists than the previous
data is erased.

“a+”(append + read) In this mode we can append as
well as read the existing file .

A structure named FILE is defined in the file
stdio.h that contains all the information about
file like :

1)Name of file

11)Status

111) Buffer size

1v)current position

v)end of file status

File Open

* The file open function (fopen) serves two
purposes:

— It makes the connection between the physical file
and the stream.

— It creates “a program file structure to store the
information” .

* Syntax:

More On fopen

* On success fopen() returns a pointer of type
FILE and on error it returns NULL.

* We assign the return value of fopen to our
pointer variable:

FILE *p1;

pl=fopen(“MYFILE.TXT”, “w”);
pl=fopen(“A:\\DOCUMENTS\\MYFILE.TXT”, “w”);

Errors in fopen

* If an error occurs in opening a file ,then fopen()
returns NULL.

FILE *p;
p=topen(“abc.txt”, ’r”);
1f(p==NULL)

d
printf(“Error in opening file”);
exit(1);

Errors may occur due to following
reasons

If we try to open a file in read mode and If the file

doesn’t exists or we do not have read permission on
that file.

If we try to create a file but there 1s no space on disk
or we don’t have write permissions.

If we try to create a file that already exists and we
don’t have permission to delete that file.

Operating system limits the number of files that can
be opened at a time and we are trying to open more
files than that number.

Closing a File

* When we finish with a mode, we need to close
the file before ending the program or
beginning another mode with that same file.

 To close a file, we use £close and the

pointer variable:
fclose(pl) ;

fprintf()

fprintf (fp,"string",variables);

inti=12;

float x = 2.356;

charch="'s;

FILE *fp;
fp=fopen(“out.txt”,”w"”);
fprintf (fp, "%d %f %c", i, x, ch);

fscanf()

fscanf (fp,"string",identifiers);

FILE *fp;
Fp=fopen(“input.txt”,’r”);
int i;

fscanf (fp,“%d",i);

getc()

identifier = getc (file pointer);

FILE *fp;
fp=fopen(“input.txt”,
char ch;

ch = getc (fp);

7”0 II)

putc()

write a single character to the output file,
pointed to by fp.

FILE *fp;
char ch;
putc (ch,fp);

End of File

* There are a number of ways to test for the end-of-file
condition. Another way is to use the value returned by the
fscanf function:

FILE *fptr1;

int istatus ;

istatus = fscanf (fptrl, "%d", &var) ;
if (istatus == feof(fptrl))

{

printf ("End-of-file encountered.\n”) ;

Reading and Writing Files

#include <stdio.h>

int main ()

{
FILE *outfile, *infile ;
intb=5,f;

floata=13.72,c=6.68, e g ;
outfile = fopen ("testdata”, "w") ;

fprintf (outfile, “ %f %d %f ", a, b, c) ;
fclose (outfile) ;

infile = fopen ("testdata", "r") ;
fscanf (infile,"%f %d %f", &e, &f, &g) ;
printf (“ %f %d %f\n ", a, b, c) ;

printf (“ %f %d %f\n ", e, f, g) ;

#include <stdio.h>
#include<conio.h>

void main()

{
char ch;
FILE *fp;

fp=fopen("out.txt","r");
while(!feof(fp))
{
ch=getc(fp);
printf("\n%c",ch);
}
getch();

Example

fread ()

Declaration:

Remarks:
fread reads a specified number of equal-sized
data items from an input stream into a block.

ptr = Points to a block into which data is read
size = Length of each item read, in bytes
n = Number of items read

stream = file pointer

Example

Example:
#include <stdio.h>
int main()
{
FILE *f;
char buffer[11];
if (f = fopen("fred.txt", “r”))
{
fread(buffer, 1, 10, f);
buffer[10] = 0;
fclose(f);
printf("first 10 characters of the file:\n%s\n", buffer);

}

return O;

}

fwrite()

Declaration:
size_t fwrite(const void *ptr, size_t size, size_t n, FILE*stream);

Remarks:
fwrite appends a specified number of equal-sized data items to an output file.

ptr = Pointer to any object; the data written begins at ptr
size = Length of each item of data
n =Number of data items to be appended

stream = file pointer

Example

Example:

#include <stdio.h>
int main()

{
char a[10]={"1",'2','3",'4",'5','6','7",'8','9","'a"};
FILE *fs;
fs=fopen("Project.txt","w");
fwrite(a,1,10,fs);
fclose(fs);
return O;

fseek()

This function sets the file position indicator for the stream pointed to by stream or you can
say it seeks a specified place within a file and modify it.

SEEK_SET Seeks from beginning of file
SEEK_CUR Seeks from current position
SEEK_END Seeks from end of file
Example:
#include <stdio.h>
int main()
{
FILE * f;

f = fopen("myfile.txt", "w");

fputs("Hello World", f);

fseek(f, 6, SEEK_SET); SEEK_CUR, SEEK_END
fputs(" India", f);

fclose(f);

return O;

ftell()

offset = ftell(file pointer);

"ftell" returns the current position for input or output on the file
#include <stdio.h>

int main(void)
{
FILE *stream;
stream = fopen("MYFILETXT", "w");
fprintf(stream, "This is a test");
printf("The file pointer is at byte %ld\n", ftell(stream));
fclose(stream);
return O;

