
Dynamic Memory Allocation

Introduction

• C manages memory statistically, automatically and
dynamically.

• Static-duration variables are allocated in main memory,
usually along with the executable code of the program, and
persist for the lifetime of the program;

• Automatic-duration variables are allocated on the stack and
come and go as functions are called and return.

• For static-duration and automatic-duration variables, the size
of the allocation is required to be compile-time constant .

• If the required size is not known until run-time (for example, if
data of arbitrary size is being read from the user or from a
disk file), then using fixed-size data objects is inadequate.

Run-time allocation

• Limitations of static allocation is avoided by using dynamic
memory allocation in which memory is more explicitly (but
more flexibly) managed, typically, by allocating it from
the heap, an area of memory structured for this purpose.

• In C, the library function malloc is used to allocate a block of
memory on the heap. The program accesses this block of
memory via a pointer that malloc returns.

• When the memory is no longer needed, the pointer is passed
to free which deallocates the memory so that it can be used
for other purposes.

• malloc()

This function is used to allocate memory
dynamically.

Declaration:void *malloc(size_t size);

The argument size specifies the number of bytes
to be allocated.

On success malloc() returns a pointer to the first
byte of allocated memory.

Ptr=(datatype)*malloc(specific size)

Allocating new heap memory

5

void *malloc(size_t size);

• Allocate a block of size bytes,

 return a pointer to the block

 (NULL if unable to allocate block)

void *calloc(size_t num_elements, size_t element_size);

• Allocate a block of num_elements * element_size bytes,

 initialize every byte to zero,

 return pointer to the block

 (NULL if unable to allocate block)

Note: void * denotes a generic pointer type

Allocating new heap memory

6

void *realloc(void *ptr, size_t new_size);

 Given a previously allocated block starting at ptr,
 change the block size to new_size,

 return pointer to resized block
 If block size is increased, contents of old block may be copied to a

completely different region

 In this case, the pointer returned will be different from the ptr
argument, and ptr will no longer point to a valid memory region

 If ptr is NULL, realloc is identical to malloc

 Note: may need to cast return value of
malloc/calloc/realloc:

char *p = (char *) malloc(BUFFER_SIZE);

Deallocating heap memory

7

void free(void *pointer);

• Given a pointer to previously allocated memory,

– put the region back in the heap of unallocated memory

• Note: easy to forget to free memory when no longer
needed...

– especially if you’re used to a language with “garbage
collection” like Java

– This is the source of the notorious “memory leak” problem

– Difficult to trace – the program will run fine for some
time, until suddenly there is no more memory!

