Inverting Amplifier

- (1) Kirchhoff node equation at V_{+} yields, $V_{+} = 0$
- (2) Kirchhoff node equation at V_{-} V_{in} yields, $\frac{V_{in} V_{-}}{R_{o}} + \frac{V_{o} V_{-}}{R_{f}} = 0$

Notice: The closed-loop gain $V_{\rm o}/V_{\rm in}$ is dependent upon the ratio of two resistors, and is independent of the open-loop gain. This is caused by the use of feedback output voltage to subtract from the input voltage.

Multiple Inputs

(1) Kirchhoff node equation at V_+ yields, $V_+ = 0$

(2) Kirchhoff node equation at V_{-} $V_{c} \leftarrow \stackrel{R}{\swarrow} \stackrel{R}{\swarrow}$ yields,

$$\frac{V_{-}-V_{o}}{R_{f}} + \frac{V_{-}-V_{a}}{R_{a}} + \frac{V_{-}-V_{b}}{R_{b}} + \frac{V_{-}-V_{c}}{R_{c}} = 0$$

(3) Setting $V_{+} = V_{-}$ yields

$$V_{o} = -R_{f} \left(\frac{V_{a}}{R_{a}} + \frac{V_{b}}{R_{b}} + \frac{V_{c}}{R_{c}} \right) = -R_{f} \sum_{j=a}^{c} \frac{V_{j}}{R_{j}}$$

Now replace resistors R_a and R_f by complex components Z_a and Z_f , respectively, therefore

 $V_o = \frac{-Z_f}{Z_a} V_{in}$

Supposing

- The feedback component is a capacitor C,
- (ii) The input component is a resistor R, Z_a = R

Therefore, the closed loop gain $(V_{\rm o}/V_{\rm in})$

$$v_i(t) = V_i e^{j\omega t}$$

where

What happens if $Z_a = 1/j\omega C$ whereas, $Z_f = R$? Inverting differentiator

Example:

Op-Amp Integrator

- (a) Determine the rate of change +5V of the output voltage.
- (b) Draw the output waveform.

Solution:

(a) Rate of change of the output voltage

$$\frac{\Delta V_o}{\Delta t} = -\frac{V_i}{RC} = \frac{5 \text{ V}}{(10 \text{ k}\Omega)(0.01 \,\mu\text{F})}$$
$$= -50 \,\text{mV}/\mu\text{s}$$

(b) In 100 μ s, the voltage decrease

$$\Delta V_o = (-50 \text{ mV}/\mu\text{s})(100 \mu\text{s}) = -5\text{V}$$

 $0.01 \mu F$

Op-Amp Differentiator

$$v_o = -\left(\frac{dV_i}{dt}\right)RC$$