Introduction to Differential
Equations
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2. coefficients of a term does not depend upon dependent

variable.
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is non - linear because in 2" term is not of degree one.
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Table 1.

Classify each differential equation

Differential Equations

Ordinary or
Partial

Linear or
nonlinear | Order | Degree

Independent | Dependent
variables variables
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It is Ordinary/partial Differential equation of order... and of degree..., itis
linear / non linear, with

variable..., and

variable....




1st — order differential equation

(1+x)dy — ydx =0

3. General form:

Q:f(x,y) or f(xy



First Order Ordinary Differential

equation
dy
f(:l:‘, Y, ﬁ) = 0.
d
d—y = fl(z,v) Derivative form
T
M(z,y)dx + N(z,y)dy =0 Differential form

Standard form
a1(x)y+aplz)y =glx Standard form

First order linear differential equation form



Second order Ordinary Differential
Equation




nth — order linear differential
equation

2. nth — order linear differential equation with variable coefficients




Solution of Differential Equation




Examples

y=3X+C , is solution of the 15t order

differential equation v _ 3 ¢, is arbitrary constant.

dx
As is solution of the differential equation for every

value of c,, hence it is known as general solution.

Examples

y' =sin(x)=y =-cos(x)+C

y'=6x+e* =y =3x"+e*+C, = y=x"+e"+Cx+C,

Observe that the set of solutions to the above 15t order equation has 1 parameter,

while the solutions to the above 2" order equation depend on two parameters.



Families of Solutions

Example Oyy'+4x =0
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{54 | Solution j(9yy '+4x)dx=C, = j9y(x)y'(x)dx - j4xdx =C,
I 2 9y* 2 2 2
£ = [9ydy +2x* =C, = S+ 2x* =C = 9y” +4x* =2C,
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The solution is a family of ellipses.

Observe that given any point (x;,Y,),
there is a unique solution curve of the
above equation which curve goes
through the given point.




Origin of Differential Equations
Solution

= U
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A. Yy = ce7 the differential equation is dx = Xy
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= 1. Free falling stone ~ d's _ L
= 2
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-QC) where s is distance or height and
g is acceleration due to gravity.
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= 2. Spring vertical displacement  d°y '
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_ where y is displacement,
& m is mass and
E, k is spring constant
2 3. RLC — circuit, Kirchoff ’s Second Law ,
3 g is charge on
d2 dq 1 capacitor,
+—qg=F L is inductance,
dt dt c c is capacitance.

R is resistance and
E is voltage
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2 1.Newton’s Low of Cooling “7 (T _T )
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where T is rate of cooling of the liquid,

is temperature difference between the liquid T’
T — TS and its surrounding Ts

Equation

2. Growth and Decay dy
dt

y is the quantity present at any time
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