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Cross-sectional view of typical 
transmission lines (a) coaxial line, 
(b) two-wire line, (c) planar line, (d) 
wire above conducting plane, (e) 
microstrip line. 

(a) Coaxial line connecting the 
generator to the load; (b) E 
and H fields on the coaxial line 
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Electric and magnetic fields around 
single-phase transmission line 

Stray field 

Triplate line 
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Transmission Lines 
 

Transmission Line Equations for a Lossless Line 

LhLh  ChCh 

The transmission line consists of two parallel and uniform conuductors, not 

necessarily identical.  

Where L and C are the inductance and capacitance per unit length of the line, 
respectively.  

Transmission LinesTransmission Lines  



By applying Kirchhoff’s voltage law to N - (N + 1) - (N + 1)’ - N’ loop, we obtain 

If node N is at the position z, node (N +1) is at position z + h, and  
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Definitions of currents and voltages for the lumped-circuit transmission-line model. 
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Since h is an arbitrary small distance, we can let h approach zero 

Applying Kirchhoff’s current law to node N we get  

from which 
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Telegrapher’s 

Equations 

All cross-sectional 
information about 
the particular line 
is contained in L 
and C 
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Waves on the Lossless Transmission Line 

Roughly speaking, a wave is a disturbance that moves away from its source as 
time passes. Suppose that the voltage on a transmission line as a function of 
position z and time t has the form 

V(z,t) = f(z-Ut)   U = const 

This is the same function as f(z), but shifted to the right a 
distance of Ut along the z axis. The displacement increases as 
time increases. The velocity of motion is U.  

f(x) has its maximum where x = z – Ut = 0, and the 
position of maximum Zmax at t = to is given by Zmax 
= Uto 

x = Z-Ut 

Any function of the argument (z-Ut) keeps 
its shape and moves as a unit in the +z 
direction. For example, let f(x) be the 
triangular function shown in (a). Then at 
time t=0 f(z-Ut)=f(z) is the function of z 
shown in (b). At a later time to , f(z-Ut)=f(z-
Uto) is the function of z shown in (c). Note 
that the pulse is moving to the right with 
velocity U.  
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The function V(z,t) = f(z-Ut) describes undistorted propogation in the +z 
direction and represents a solution of the wave equation for a lossless 
transmission line: 

The wave equation is satisfied provided that  

The leftward-traveling wave v(z,t) = f(z+Ut) is also a solution.  
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The wavelength of the wave is defined as the distance between the maxima at 
any fixed instant of time. V(z,t) has maxima when its argument (kz-ωt) is zero, 

±2π, ±4π, etc. At t = 0, there is a maximum at z = 0. The next one occurs when 
kz = 2π , or z = 2π / k.  

λ= 2π / k  

U = 2πf / k = λf 

t = 0 

t = to 

v(z,t)=Acos(kz-ωt)       (U= ω/k) 

An important special case is that in which 
the function f is a sinusoid. Fig (a) shows 
the function v(z,t)=Acos(kz-ωt) as it 
appears if photographed with a flash 
camera at time t=0. In (b) it is seen at 
the later time to 
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The separation of time and space dependence for sinusoidal (time – harmonic) 
waves is achieved by the use of phasors.  

Phasors are the complex quantities (in polar form) representing the magnitude 
and the phase of sinusoidal functions. Phasors are independent of time.  
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Time-harmonic function 
expressed as a cosine wave 

Phasor 
“The real 

part of” 

Time Factor 

For a wave moving in the +z direction,  

The phasor representing this positive – going wave is 

For a wave moving to the left, 
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A = const at all z since we are dealing 
with a lossless line. However, the 
phase does vary with z.  

 

 

 

 

For the leftward – moving wave, the 
phasor would rotate in the counter – 
clockwise direction.  

Right-ward 
moving 
wave 
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Characteristic Impedance 

The positive - going voltage wave: 

Instantaneous voltage 

Voltage phasor 

(A=constant, Φ = constant) 
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The second telegrapher’s equation in phasor form 

For the positive – going wave,  

Characteristic impedance  
(independent of position) 

- real number (50-400Ω) 

Since and 
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For a negative – going wave,  

Power transmitted by a single wave 

Characteristic Impedance continued 

(average 
power; the 
instantaneous 
power 
oscillates at 
twice the 
fundamental 
frequency) 
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Reflection and Transmission 

At z = 0, 

Assuming that the incident wave is known and solving for  , we obtain 
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Example Suppose ZL = ∞ (open circuit). Find the distribution of the voltage on 
the line if the incident wave is  

Assume that A is real (Φ = 0) 
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Reflection and Transmission continued 
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The total voltage on the line is: 
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The total voltage is the sum of the two waves of equal amplitude moving  
in opposite directions. The positions of zero total voltage stand still. This 
phenomenon is referred to as a standing wave. 

In the case of a single traveling wave, )cos(),( tkzAtzv  ,  there are positions 

where the voltage vanishes, but these positions move at the velocity of the wave 
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Reflection and Transmission continued 
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If             (short circuit), and 

Again we have a standing wave but with the nulls at  

If (resistive), 

When n=1 ( , i.e. the line is terminated in its characteristic impedance), 

the reflected wave vanishes 

Suppose that one more transmission line is connected at the load terminals 
(z=0) 

Z01 Z02 
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Reflection and Transmission continued 

The voltage at z=0, if we approach from the left, is  )0()0( 
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Now, assuming that  is known, we can find and 
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Standing-Wave Ratio 
(losseless transmission line) 

The total phasor voltage as a function of position on a line connected to a load at  

z=0 is 
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At any position, the instantaneous voltage on the line is a sinusoidal function of 
time, with the amplitude          given by the above expression. The amplitude 
regularly increases and decreases as the cosine function varies. The positions of 
voltage amplitude maxima and minima are stationary (independent of time). This 
phenomenon is referred to as a standing wave.  

The amplitude 
of voltage as a 
function of z 
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Standing-Wave Ratio continued 
(losseless transmission line) 

In the special case of          , the reflected wave vanishes and there is only a 
single traveling wave moving to the right. In this case the voltage amplitude is 
independent of position (“flat” voltage profile). 

If there are two (or more) traveling waves on the line, they will interact to 
produce a standing wave. 

0o

Transmission LinesTransmission Lines  









50

45

5.0

1

o

R

o

i

Z

VV







Standing-Wave Ratio continued 
(losseless transmission line) 
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The standing-wave ratio (SWR) is defined as  

SWR = 1 when 

For two adjacent maxima at, say, N=1 and N=0 we can write 

Voltage maxima and minima repeat every half wavelength. 
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Transmission Line Equations for a Lossy Line 
(sinusoidal waves) 

From Kirchhoff’s laws in their phasor form, we have 

Proceeding as before (for a lossless lines), we obtain the phasor form of the 
telegrapher equations, 

where L, R, C, and G are, respectively, the series inductance, series resistance, 
shunt capacitance, and shunt conductance per unit length.  

The corresponding (voltage) wave equation is 

The two solutions of the wave equation are 

where      and     are constants describing the wave’s amplitude and phase and  
is the propagation constant.   
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Transmission Line Equations for a Lossy Line continued 
(sinusoidal waves) 

The propagation constant of a lossy transmission line is  

(complex number) 

Inserting R=0, G=0 (lossless line) we obtain 

where     and     are real numbers. 

Causes negative 
phase shift (phasor 
rotates clockwise as 
z increases) 

Causes attenuation 
(amplitude becomes 
smaller exponentially 
as z increases) 
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Transmission Line Equations for a Lossy Line continued 
(sinusoidal waves) 

A phase shift of      equal to      corresponds to the wave travel distance z equal 
to the wavelength    : 

  is the phase constant (measured in radians per meter) 

  is the attenuation constant (measured in Nepers per meter) 

  is the attenuation length (amplitude decreases 1/e over z=     ) 

The corresponding instantaneous voltage is  

The position of a maximum is given by 

As t increases, the maximum moves to the right with velocity 
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- Phase Velocity (Up) 

In general, 
nonlinear 
functions of 
ω 
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Dispersion 
In general, the phase velocity Up is a function of frequency; that is, a signal containing many 
frequencies tends to become ‘dispersed’ (some parts of the signal arrived sooner and others 
later.) 

Up is independent of frequency for (1) lossless lines (R=0, G=0) and (2) distortionless lines 
(R/L=G/C) because for those lines β is a linear function of ω. 

Up at any frequency is equal to the slope of a line drawn from the origin to the 
corresponding point on the graph. For ω =                radians/second Up = ∞. In 
general, Up can be either greater or less then c.  

Information in a wave travels at a different velocity known as the group velocity 

 

    is equal to the slope of the tangent to the ω-β curve at the frequency in 
question (for                     for this particular system).     always remains less 
then c.  
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Non-Sinusoidal Waves 
(lossless transmission line) 
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Reflection of a rectangular 
pulse of a short circuit.  
 
 
(a) Shows the incident pulse 
moving to the right. 
 
 
In (b) it is striking the short-
circuit termination, note that 
the sum of the incident and 
the reflected voltages must 
always be zero at that 

position.  
 
 
In (c) the reflected pulse is 
moving to the left.  



Multiple Reflections 
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Example  Suppose t2 = ∞ (an infinitely long pulse or a step function) and              , so that            
        . Find the total voltage on the line after a very long time.  

The initial (incident) wave moving to the right has amplitude 

The first reflected wave moving to the left has amplitude 
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Multiple Reflections continued 

The second reflected wave moving to the right has amplitude 

The total voltage at          is given by the infinite series 

Inserting the values of     and     we find that             (simply results from the voltage divider 

of Rs and RL, as if the line were not there.  
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Lattice (bounce) diagram 
This is a space/time diagram which is used to keep track of multiple reflections. 
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Points to Remember 

1. In this chapter we have surveyed several different types of waves 
on transmission lines. It is important that these different cases not 
be confused. When approaching a transmission-line problem, the 
student should begin by asking, “Are the waves in this problem 
sinusoidal, or rectangular pulses? Is the line ideal, or does it have 
losses?” Then the proper approach to the problem can be taken.  

2. The ideal lossless line supports waves of any shape (sinusoidal or 
non-sinusoidal), and transmits them without distortion. The 
velocity of these waves is         . The ratio of the voltage to current 
is              , provided that only one wave is present. Sinusoidal 
waves are treated using phasor analysis. (A common error is that 
of attempting to analyze non-sinusoidal waves with phasors. 
Beware! This makes no sense at all.) 

3. When the line contains series resistance and or shunt conductance 
it is said to be lossy. Lossy lines no longer exhibit undistorted 
propagation; hence a rectangular pulse launched on such a line will 
not remain rectangular, instead evolving into irregular, messy 
shapes. However, sinusoidal waves, because of their unique 
mathematical properties, do continue to be sinusoidal on lossy 
lines. The presence of losses changes the velocity of propagation 
and causes the wave to be attenuated (become smaller) as it 
travels.  
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Points to Remember continued 

4. For lines other than the simple ideal lossless lines, the velocity of 
propagation usually is a function of frequency. This velocity, the speed of 
voltage maxima on the line, is properly called the phase velocity Up. The 
change of Up with frequency is called dispersion. The velocity with which 
information travels on the line is not Up, but a different velocity, known as 
the group velocity    . The phase velocity is given by                 . However 

 

5. Examples of non-sinusoidal waves are short rectangular pulses, and also 
infinitely long rectangular pulses, which are the same as step functions. 
Problems involving sudden voltage steps differ from sinusoidal problems, 
just as in ordinary circuits, problems involving transients differ from the 
sinusoidal steady state. Pulse problems are usually approached by 
superposition; that is, one tracks the pulses that propagate back and forth, 
adding up the waves to obtain the total voltage at any place and time.  
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Points to Remember continued 

6. All kinds of waves are reflected at discontinuities in the line. If 
the line continues beyond the discontinuity, a portion of the 
wave is transmitted as well. The reflected and transmitted 
waves are described by the reflection coefficient and the 
transmission coefficient. For sinusoidal waves there is a simple 
formula giving the reflection coefficient for any load impedance 
ZL. For non-sinusoidal waves, the same formula can be used, 
but only if the load impedance is purely resistive. Otherwise the 
reflected wave has a different shape from the incident wave, 
and a reflection coefficient cannot be meaningfully defined.  

 

7.   In the case of non-sinusoidal waves, it is sometimes necessary 
to add up the contributions of many reflected waves bouncing 
back and forth on the line. However, for sinusoidal steady-state 
problems, it is only necessary to consider two waves, one 
moving to the right and the other to the left.  
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Points to Remember continued 

8. When both an incident and reflected wave are simultaneously 
present on a transmission line, a standing wave is said to be 
present. This means that a stationary pattern of voltage maxima 
and minima is present. The ratio of the maximum voltage to the 
minimum voltage is called the standing-wave ratio (SWR). The 
positions of the voltage maxima are determined by the phase 
angle of the load’s reflection coefficient, and the spacing 
between each pair of adjacent maxima is λ/2 (and not λ, as one 
might think). Positions of maximum voltage are positions of 
minimum current, and vice versa.  

 

9.    The impedance Z(z) at any point on a line is defined as the ratio 
of the total voltage phasor to the total current phasor at the 
point z. If a standing wave is present, the impedance will be a 
periodic function of position along the line, with period λ/2. Note 
that this impedance is different from the “characteristic 
impedance” Zo, which is a constant that depends only on the 
construction of the line. 
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