f Rigid Bodies



Rigid body

: a system of mass points subject to the
straints that the distances between all
amain constant throughout the

es, there are 3N degrees of

a rigid body, the number of degrees of freedom
educed by the constraints expressed in the form:

« How many does a rigid
body have?



hdent coordinates of a rigid
body

s to be described by its
location

Is determined by the

f the body, and the

ion is determined by the relative position of
' points of the body relative to that point




hdent coordinates of a rigid
body

e point of the body requires the
<, independent coordinates

nd point lies at a fixed
t, so it can be specified by
yendent angular coordinates




hdent coordinates of a rigid
body

any other third point is determined
te, since its distance from the first
ixed

, the total number of independent coordinates
ary do completely describe the position and
ion of a rigid body is




itation of a rigid body

of a rigid body can be described by
dent coordinates,

of a rigid body can be
independent

mmon ways is via the definition of direction
- cosines



. specify the orientation of one
Cartesian set of axes relative to another set with
common origin




agonality conditions

=(icos6,, + jcosO, +kec

! similar operations for the remaining 4
ptain orthogonality conditions in a compact



nal transformations

onents in the primed set of axes



igonal transformations

are defined

gonal tm can be expressed as a
elationship witha A




the transformation matrix

to the transformation

element

« Orthogonality conditions



‘the transformation matrix

_ . of a negative determinant
_corresponds to a complete inversion
of coordinate axes and is

(a.k.a. )




I the transformation matrix

case, there are non-vanishing
transformation matrix

eral case, there are ' independent equations
ogonality conditions

L

* Therefore, there are independent coordinates that
describe the orientation of the rigid body



» Let’s consider a 2D rotation of a position vector r

* The z component of the vector is not affected,
therefore the transformation matrix should look like

» With the orthogonality condit

* The total number of indepenc
coordinates is
4-3=



* The most natural choice for the independent
coordinate would be the , SO that

* The transformation matrix




* The three orthogonality conditions

* They are rewritten as




* The 2D transformation matrix

It describes a rotation of
the coordinate axes

* Alternatively, it can describe
a rotation of the same

stem




Lhe Euler angles

D describe the motion of rigid bodies in the
mulation of mechanics, it is necessary

3 most common anc
neters are the

performed in a specific sequence

* The Euler transformation matrix is proper

7

Leonhard Euler
(1707 —1783)



4.4

* First, we rotate the system around :

xl

* Then we rotate the system aroundg I0& X aXIS
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4.4

* Finally, we rotate the system around the Z axis

* The complete transformation can be expressed as a
product of the successive matrices



e Euler angles

ribed sequence is known as the

~+ Overall, there are  different possible conventions

defining the Euler angles

4.4



Euler theorem

Euler the : the general displacement of a rigid
2 point fixed is a rotation about some

the fixed point is taken as the origin, then the
placement of the rigid body involves
; only the

ich a rotation could be found, then the axis of
rotation would be unaffected by this transformation

* Thus, any vector lying along the axis of rotation
must have the same components before and after the
orthogonal transformation:

4.6



« Euler theorem

2 have to show that b e orthogonal
rmation matrix has at least one eignevalue

of an eigenvalue problem is

e It can be rewritten for the case of

4.6



uler theorem

D :onality condition:

can be true only if

4.6



Euler theorem

e (rotation in a plane) n = 2:

Miche Chasles
(1793-1880)
hold for orthogonal

ses in 2D: there is no vector in

of vetor R:

« Removing the constraint, we obtain
: the most general displacement of a rigid
body is



4.8
Initesimal rotations

ider orthogonal transformation matrices
g form

matrix with elements

h matrices A are c
ally, two rotations do not commute

e Infinitesimal rotations commute

i



\Mtesimal rotations

the infinitesimal rotation:

« Infinitesimal change of a vector:

4.8



4.8

. Is a differential vector, a
differential vector

. IS to the rotation plane




4.8

nd® = d}

* These matrices are called




ifinitesimal Euler angles

COS I/ COS ¢ — cos sin @ si
=| —siny cos g —cos fsinpcosy
sin @sim ¢
angles it can be rewritten as
1

A-| - g+ ol

4.8



*hange of a vector

4.9



4.10

ple: the Coriolis effect

ors in the rotating and in the
a5 are related as

“

the ra’e of cha;’ug&velocity

f ;::J:?-ﬁ 28
* Rotati~.g system: aczeleration acquires  Gaspard-Gustave
and components Coriolis

(1792 - 1843)



: the Coriolis effect

e relationship between those two?



energy of a system of particles

 Introducing a

- We can rewrite the coordinates in the center-of-
mass coordinate system:

 Kinetic energy can be rewritten:

1.2

Center
of mass



 On the other hand

* In the center-of-mass coordinate
system, the center of mass is at the
origin, therefore

1.2

Center
of mass



* Kinetic energy of the system of particles consists of
a Kinetic energy about the center of mass plus a
Kinetic energy obtained if all the mass were
concentrated at the center of mass

* This statement can be applied to the case of a

: Kinetic energy of a rigid body consists of a
Kinetic energy about the center of mass plus a kinetic
energy obtained if all the mass were concentrated at
the center of mass

* Recall Chasles’ theorem! | Center

of mass




5.1

* Chasles: we can represent motion of a rigid body as
a combination of a and

s If the potential and/or the generalized external

forces are known, the translational motion of center
of mass can be dealt with separately, as a motion of a

* Let us consider the rotational part or motion

Center
of mass




lonal kinetic energy

5.3



1al kinetic energy

5.3



or and moment of inertia

alled the

ten - metric matrix (only 6
ndent elemen

gid body with a
<1111y, the definition of the inertia tensor is as

« Introducing a notation

. I is called the

5.3



or and moment of inertia

- * The moment of inertia depends upon the
and of the axis of rotation

5.3



5.3

* For a constrained rigid body, the rotation may occur
not around the center of mass, but around some
other point 0, fixed at a given moment of time

* Then, the moment of inertia about the axis of
rotation is:

Center
of mass




5.3

. : the moment of inertia about a
given axis Is equal to the moment of inertia about a
parallel axis through the center of mass plus the
moment of inertia of the body, as if concentrated at
the center of mass. with respect to the original axis

i

Center
of mass

b



5.1

* Does the change of axes affect the w vector?

* Let us consider two systems of coordinates defined
with respect to two points of the rigid body:
X112’y and X°yy°»Z’,

* Then

1 ETY




5.1

. difference in w vectors at two points
must be parallel to the line joining two points

* It is not possible for of the rigid body

* Then, the only possible case:

* The angular velocity vecto
IS for all coordinz
systems fixed in the body




e: inertia tensor of a
nogeneous cube

a homogeneous cube of mass U

n at one of cube’s corners

5.3



a: inertia tensor of a
geneous cube

5.3



5.1
1omentum of a rigid body

Angular mo __ of a system of particles is:

vector

, In

< ating frame of reference,
istances between

points of the rigid body

momentum of rigid body:



lentum of a rigid body

-' inetic energy:

5.1



5.5

Free rigid body S

gid body, the Lagrangian is:

darate the Lagrangian into two independent
d consider the rotational part separately

- Then, the equations of motion for rotation



Free rigid body

5.5
5.6



Acipal axes of inertia

or is a symmetric matrix

2, such matrices can be
diagonalized e looking for a system of

inates fixed to a rigid body, in which the inertia
has a form: .

gonalize the inertia tensor, we have to find the
s of a

5.4



S 5.4
Principal axes of inertia

e axes, in which the inertia tensor is
alled the of a rigid body;
of the secular equations are the

er diagonalization of the inertia tensor, the
tions of motion for rotation of a free rigid body
¢ like

* After diagonalization of the inertia tensor, the
rotational kinetic energy a rigid body looks like



cipal axes of inertia

directions of the principal axes we have
tions for the w

only non-zero

_ * In this case, the rotational kinetic energy has only
term



a free rotational motion

the body axes along the principal
otating rigid body

he rotation axis is
ne principal axes (a - small

2 equations of motion



free rotational motion

(0, = CcOnst

(

Vo) TVaa)



free rotational motion

Vo TV K =0

olutions of this equation depends
CIEVVERENS T of the principal moments of

I, < I, 13'-'j- _

* Exponentially



sification of tops

e relative values of the principle
, rigid body can be classified as



fincipal axes of a uniform
- cube

have found the inertia tensor for a
ne origin at one of the corners,
2s along the edges:

2M

- » The secular equation:



Incipal axes of a uniform

e

11Ma’

]
e

1e directions of the principal axes we have
directions for the eigenvectors

sider



T

ample principal axes of a uniform
cube




fee symmetrical top

I .
‘,Dfer_;essit)n 1 of axisg




pof non-free rigid bodies

kle rigid bodies that move in the presence
JeilliiilLOr in an open system with generalized
torques

e non-Lagrangian (open) systems, we modify
ations of motion via introduction of



T

avysymmetrical top with one point
fixed

em, it is convenient to use the Euler
independent variables

t us express the components of w as functions of
uler angles

e general infinitesimal rotation associated with w
e considered as consisting of three successive
aadnal rotations with angular velocities












trical top with one point
fixed



ngian:

sing the Euler angles




EavysyYmmetrical top with one point
fixed




atrical top with one point
- fixed

in coordinates



metrical top with one point
fixed

5 hot contain explicitly

1e system is conserved

2 the problem completely, we need
“additional quadratures

» We will look for them, using the conserved
quantities



trical top with one point
- fixed

1, (hcos O+yr) = la
I, (¢cos” O+yrcos 0) + I, (g

L (ces*0)+ (I,acos O — Liee
acos O+ @si | ¢ : ~

v =La—_ £ (@)
2 -

(f1(0)cos 6+

o

. Oe variable only: we can find all the quadratures!



rical top with one point
b ixed
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C ivamwm with an
potential
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* In the most general case, the integ

 Effective potential is a function
a minimum: motion in 6 is bound
two values



* When @ is at its minimum, we have a precession
* Otherwise, the top is bobbing:

* The shape of the nutation trajectory depends on the
behavior of the time derivative of ¢




ged rigid body in an
’ctromagnetic field

5>

f dwing vector potential (C —
ctor)

i —

— 8

agnetic field reiatcd to vector €C?




d rigid body in an
magnetic field



rigid body in an
dmaghnetic field

charge/mass ratio

| rotational kinetic energy



h"ius of gyration

5.4



