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Introduction




Pure Bending




Symmetric Member in Pure Bending

M = Bending Moment

Sign Conventions for M:

@ -- concave upward

e -- concave downward



Force Analysis — Equations of Equilibrium




Deformation in a Symmetric Member in Pure
Bending

Assumptions of Beam Theory:
1. Any cross section L to the beam axis remains plane

2. The plane of the section passes through the center of
curvature (Point C).



The Assumptions Result in-the Following Facts:
1.7,=7,= 0 > 7, =%,=0

2.0,=0,=1,=0
The only non-zero stress: o, #(0 — Uniaxial Stress

The Neutral Axis (surface): o, =0 & ¢, =0




L

PO  LineDE  (4.4)

Where p = radius of curvature

0 =the central angle

L =( p—yp)@ LineJK (4.5)
Before deformation: DE = JK

Therefore, §S=7] — (4.6)

0=(p—y)0—-pb=-y0



Al

The Longitudinal Strain g, = -

gx:5:—y(9
L p6

(4.8)

g, varies linearly with the distance y from the neutral surface

The max value of €, occurs at the top or the bottom fiber:

(4.9)






Stresses and Deformation is in the Elastic Range
For elastic response — Hooke’s Law

o =Fk¢_ 4.11)

Therefore, O =—

max

P 4.12)
C



Based on Eq. (4.1)

[od4=0

[od4= j(—fam)dA - —i—mjydA A

Hence,

j ydA = first moment of area =0

(4.13)



Therefore,

Within elastic range, the neutral axis passes
through the centroid of the section.

According to Eq. (4.3) O, = —fO'm
and [(yodt)=M

N %am)dA - M

o 2
— |y dA=M
or . I)/ (4.14)



Since [ =

O
Eq. (4.24) 7’" I ydA=M

can be written as

O = — Elastic Flexure For

At any distance y from the neutral axis:

O = _% Flexural Stress

i I

(4.16)



If we define

Elastic section modulus =

Eq. (4.15) can be expressed as



Solving Eq. (4.9)

Finally, we have







Deformation in a Transverse Cross Section

Assumption in Pure Bending of a Beam:

The transverse cross section of a beam remains “plane”.

However, this plane may undergo deformations.

A. Material above the neutral surface (y>0), 0.= Q&.,= C

£,=—VE € =-VE,
Yy
Since R C X))
p
V V
Hence, & e —y E, = —y (4.22)
p p

|}
Therefore, | I

neutral
axis




Material below the neutral surface (y<0),

—>

As a consequence,

Analogous to Eq. (4.8)

y
gxz—y 9 p=_8
p X

For the transverse plane:

o.=D,e_ =0

neutral

l 1
, axis

—

After
Deformation

Original
Cross Section




p = radius of curvature,

1/p = curvature

-

Q
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Bending of Members Made of Several Materials

From Eq. (4.8) & = — 4
yo,
For Material 1: o, =FE & = _ﬂ
Yo,
L,y

For Material 2: O, = L£,&, =—




Ey

dF = o0,dA=——=dA
Jo,
dF, = o, dd = - 222 44
o,

Designating E, = nE,

dF, = _(mE)y ., _ —Q(ndA)
p p

Fig. 4.25 Transformed section for composite bar.



Fig. 4.26 Distribution of stresses in trans-
formed section.

Notes:

1. The neutral axis is calculated based on the transformed section.
2. O » = NnO

3. I = the moment of inertia of the transformed section

1 M

4. Deformation -- —

p EI



Beam with Reinforced Members:

A, = area of steel, A, = area of concrete

E, = modulus of steel, E_ = modulus of concrete

n=E/E,



Beam with Reinforced Members:

A, = area of steel, A, = area of concrete

E; = modulus of steel, E_ = modulus of concrete

n=E/E,

(bx)g—nAS(d—x):O

l bx’ +n AS X—n Asd =( —> determine the N.A.
2



Stress Concentrations

Gm:K%
I/




Eccentric Axial Loading in a Plane of Symmetry




Gx — (Gx)centric T (Gx)bending




Unsymmetric Bending

-- Two planes of symmetry

y — axis & z-axis

-- Single plane of symmetry—
y-axis
--M coincides with the N.A.




For an arbitrary geometry + M applies along the N.A

SF, =0 .O'di =0 4.1)
=M, =0 : zo . dA =0 (moment equilibrium) 4.2)
M, =0 ._(J/U dA)=M (moment equilibrium) 4.3)

Substituting o =—-""Y into Eq. (4.2)
C






(o2
We have Iz(_ my)dA =

= n [ 2(y)dA =0
C C

ing ¢, /c = constant)

o [yada=1,=0

I;, = 0 indicates that y- and z-axes are the principal

centroid of the cross section.

Hence, the N.A. coincides with the M-axis.

If the axis of M coincides with the principal centroid axis, the
superposition method can be used.




M, =M cosb
M.y

For Case A O,=— 7
M;Z

For Case B Gx =T I

For the combined cases :

My:MsinQ

(4.53)

(4.54)

_sz_l_Myz

1 I

z y

(4.55)

Case A

Case B



The N.A. is the surface where o, = 0. By setting ox =0 in Eq. (4.55), one has

_sz+Myz=
1 1

Z y

0

Solving for y and substituting for M, and M, from Eq. (4.52),

I
Y= ([—Z tan )z (4.56)

y

4

This is equivalentto ) /z =m = slope =| —= |[tan &
/
y

The N.A. is an angle ¢ from the z-axis:

1
tang = Iz tand (4.57)

y




General Case of Eccentric Axial loading




Bending of Curved Members

Length of N.A. before and after bending RO=RO (4.59)
The elongation of JK line o=r6@ —r@ 460
Since r=R-y r =R -y (461)

We have 0 = (R' — y)ﬁ' —(R—-y)0



If we define 6’ - 6 = AB and knowing R 6 = R’ 6’, thus

0 =—yA¢ (4.62)
Based on the definition of strain, we have
. o YAl
0 ro
Substituting » = R — p into the above equation,
AG
g == L
& R—y
Also,o0,=E ¢,
EAGO
o =- 4

i & R-y




_— G__EA@ y
otting X 8 R—y —>

o, is not a linear function of y.

Since yr =R—y — y=R-r, therefore,

EAOG R —r
o, =—
6 r

Substituting this eq. into Eq. (4.1) Iadi =0

_-EAHR—rdA:O and _EAQJ-R—rdA:O
7 o r
'R—I/'dA:O i R-"dTA_J‘dA:O (Egezcost.)

r



Therefore, R can be determined by the following equation:

(4.66)

11l

Or in an alternative format: — = — | —d4

R Ar

The centroid of the section is determined by

;:%jm’A

Comparing Egs. (4.66) and (4.67), we conclude that:

The N.A. axis does not pass through the Centroid of
the cross section.



NI Y= R —r, it follows

dA=M

EAQJ(R—r)Z

ot ﬂQ[R J'

2RA+jrdA]=M

Recalling Egs. (4-66) and (4.67), we have

%f’(m 2RA+rA)=M

Finally, EAO Y

)

(4.68)



By defining », — ; — R , the above equation takes the new form

EAG M
6 Ae

(4.69)

Substituting this expression into Eqs. (4.64) and (4-65),

- My and o

B _ M(r—R)
" Ae(R-Y) : Aer

Determination of the change in curvature:

1_19

R RO
Since & =@+ Af and from Eq. (4.69), one has

From Eq. (4.59)

AO, 1 M
I+—)=—({0+——
( «9) R( EAe)

1_1
R R



Hence, the change of curv










Gx o (O-x)centric T (Gx )bending

Gx:P_My
A 1

EG Onlyd4 =0
C

jysz =0










S =










I b(2c)3 B
Z_ | s 3

7 %bczay
o

o, =—>y
Yy

=2b[ " y(-ZLy)dy-2b[" y(-0,)dy
> 2bj ¥ yyy)y fy

= %byﬁcry +bc’o, —by.o,
3






