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Dipole moments and Dipole moments and 
electrostatic problems electrostatic problems   
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Let us put a dielectric sphere of radius aa 

and dielectric constant 2, in a dielectric 

extending to infinity (continuum), with 

dielectric constant 1, to which an 

external electric field is applied. Outside 

the sphere the potential satisfies Laplace's 

equation =0=0, since no charges are 

present except the charges at a great 

distance required to maintain the external 

field. On the surface of the sphere 

Laplace's equation is not valid, since there 

is an apparent surface charge.  Figure 1 

Inside the sphere, however, Laplace's equation can be used again. 

Therefore, for the description of , we use two different functions, 1 

and 2, outside and inside the sphere, respectively. 
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 Let us consider the center of the sphere as the origin of the coordinate 
system, we choose z-axis in the direction of the uniform field. Following 
relation in the terms of Legendre polynomial represents the general 
solution of Laplace’s equation: 
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The boundary conditions are: 
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since the normal component of D must 
be continuous at the surface of the 
sphere  

At the center of the sphere (r=0) 2 must not have a singularity.  4. 
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On account of the first boundary condition and the fact that the 
Legendre functions are linearly independent, all coefficients An are zero 
except A1, which has the value A1 = - Eo. On account of the fourth 
boundary condition, all coefficients Dn are zero. Thus, one can write:  
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Applying the second and third boundary condition to (2.4) and (2.5), 
we have for any of n except n=1:  
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From these equations it follows that Bn=0 and Cn=0 for all values of n 

except n=1. When n=1, it can be written: 
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Substitution of these values in (2.4) and (2.5) gives:  

Hence: 
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Since the potential due to the external charges is given by =-Eoz, it 

follows from (2.8) and (2.9) that the contributions '1 and '2 due to 

the apparent surface charges are given by: 
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The expression (2.10) is identical to that for the potential due to an 
ideal dipole at the center of the sphere, surrounded by a dielectric 
continuum, the dipole vector being directed along the z-axis and given 
by: 
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The total field E2 inside the sphere is according to (2.9), given by: 
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A spherical cavity in dielectricA spherical cavity in dielectric    

In the special case of a spherical cavity in dielectric ((11==;;  22==11),), 
equation (2.13) is reduced to: 

This field is called the "cavity field". The lines of dielectric 

displacement given by Dc=3Do/(2+1) are more dens in 

the surrounding dielectric, since D is larger in the dielectric 

than in the cavity  

22=1=1  
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0
12

3
EE







C (2.14) 



8 

AA  dielectricdielectric  spheresphere  inin  vacuumvacuum  

For a dielectric sphere in a vacuum (1=1; 2=), the equation (2.13) is 
reduced to:  
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where E is the field inside the sphere. 

The density of the lines of dielectric displacement Ds  is higher in the 
sphere than in the surrounding vacuum, since inside the sphere 
Ds=3Eo/(+2). Consequently, it is larger than Eo.  

11=1=1  

22==  

According to (2.12) , the field outside the 
sphere due to the apparent surface 
charges is the same as the field that 
would be caused by a dipole m at the 
center of the sphere, surrounded by a 
vacuum, and given by: 
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This is the electric moment of the dielectric sphere.electric moment of the dielectric sphere. Therefore 

(2.16) can be checked in another way. The uniform field Es in the 

dielectric sphere, given by (2.15), causes a homogeneous polarization 

of the sphere. The induced dipole moment per cm3 is according to the 

definition of P, given by:  
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Hence the total moment of the sphere is: 
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which is in accordance with (2.16).  



10 

Polarizability Polarizability   
When a body is placed in a uniform electric field Eo in vacuumin vacuum, caused 

by a fixed charge distribution, its dipole moment will in general 

changed.  

In most cases polarizable bodies are polarized linearly, that is, the 

induced moment mm is proportional to EEoo.  In this case one have:  

0Em  (2.19) 

where  is called the (scalar) polarizability of the body.(scalar) polarizability of the body.    

The difference between the dipole moments before and after the 

application of the field Eo is called the induced dipole moment m. If a 

body shows an induced dipole moment differing from zero upon 

application of a uniform field Eo, it is said to be polarizable.polarizable.  
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From the dimensions of the dipole moment, [e][l], and the field 

intensity, [e][l]-2, it follows that the polarizability has the dimension of a 

volume. Using the above definition of the polarizability, we conclude 

from equation (2.12) that a dielectric sphere of dielectric constant  

and with radius aa has a polarizability:  
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For a conducting sphere in the case   from the relation (2.20) one 

can obtain that a conducting sphere with radius aa has a polarizability:  

3a (2.21) 
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There is the fundamental difference between the two types of 

polarization. In the case of dielectric sphere every volume element is 

polarized, whereas in the case of a conducting sphere the induced 

dipole moment arises from true surface charges.  

In some simple cases of spherical molecules, it is possible with  to 

describe the induced polarization. In general, it is not true and we have 

to use a polarizability tensor  provided the effects remain linear. It 

leads to: 

0Em  (2.22) 

In such a case the induced dipole moment need to have thethe  samesame  

directiondirection  as the appliedapplied  fieldfield. In general this direction will depend on 

the position of the body relative to the polarizing field. 
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Polarization and Energy 
Very often it is useful to collect some of the elementary charges into a 
group forming an atom, a molecule, a unite cell of a crystal, or some 
larger unit. Let the jth unit of this type contain the s elementary 
charges ej1, ej2,....., ejk,.....,ejs, and let 

),...,....,,(x jjjjj sk21 rrrr (2.23) 

m r( )x e
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
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(2.24) 

be an abbreviation for the set of all their displacements rj1,....., rjs. 

is the electric moment of this jth group of charges, and  

Then 

M( ) ( )X x
j

j

m (2.25) 

where the sum extends over all the groups.  
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The vector sum of their individual moments mm((xxjj)) thus forms the total 

moment MM((XX)).. The main aim of this part is to find the average 

displacements, and hence the averageaverage  electricelectric  momentmoment under the 

influence of an external electric field. 

In order to obtain a preliminary idea about the average contributions of 

certain displacements to the electric moment we shall consider two 

cases, each of which has its characteristic type of displacement: 

1) The displaced charge is bound elasticity to an equilibrium position; 
(induced dipole moment) (induced dipole moment)   

In the first case the displacement of the charge e, carried out by a 

particle of mass m on a distance r, restoring force proportional to -r 

acts on the particle in a direction opposite to the displacement (hence 

the - sign). Thus if the constant external field E is applied: 

2) A charge has several equilibrium positions, each of which it 

occupies with a probability which depends on the strength of an 

external field.(.(Permanent dipole moment)Permanent dipole moment)  
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where o/2 denotes the frequency of oscillation, and -mo2r is the 

restoring force. Equation (2.26) can be written  
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0
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e
(2.28) 

where  

i.e. dr'/dt=0. The charge e, therefore, carries out harmonic oscillations 

about the position r' which thus represents the time average of its 

displacement, i.e. if C and  are constant  

)tCcos( '  0rr
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The average electric moment (induced) is, therefore, 

(2.29) 



 er E' =

e

m
0

2

For an example of the second mechanism of polarization let us 

consider a particle with the charge ee that can be in two different 

equilibrium position AA  and BB, separated by a distance bb.  In the 

absence of an electric field the particle has the same energy in each 

position.  

Thus, it may be assumed to move in a potential field of the type shown 

in Fig.2.2. In equilibrium with its surroundings it will oscillate with an 

energy of order kT about either of the equilibrium positions, say about 

A. A.   
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Occasionally, however, through 

a fluctuation, it will be acquire 

sufficient energy to jump over 

the potential wall separating it 

from BB. On the time of average, 

therefore, it will stay in AA as 

long as in BB, i.e. the probability 

of finding it in either A A or BB  is 

0.5.0.5.  

The presence of a field E will affect this in two ways. Firstly, as in case 

(1), the equilibrium position will be shifted by amount r' which for 

simplicity will be assumed to be the same in AA  and BB. Secondly, the 

potential energies VA, VB of the particle in the two equilibrium positions 

will be altered because its interaction energy with the external field 

differs by e(bE), i.e. 

)(bEeVV BA  (2.30) 
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Therefore, in average, the particle should spend more time near BB than 

near AA. Actually, since according to statistical mechanics, the 

probability of finding a particle with energy V is proportional to e-V/kT, 

are the probabilities for positions AA and BB respectively. They have been 
normalized in such a way as to make  

in agreement with the physical condition that the particle must be in 
one of the two positions. Thus from (2.31) and (2.30)  
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(2.32) 
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It follows from the definition of the probabilities ppAA and ppBB that if the 
condition of the system over a long time tt1 1 is considered, the particle 
will spend a time (use 2.32)  
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in position AA, and  

in position BB. It has thus been displaced by the distance b from AA to BB 
during the fraction 1/2(pB-pA) of the time tt11. The average moment 
induced by the field is thus 

(2.34) )(
2
1

AB ppe b

Hence, if  is the angle between b and E, the projection of the induced 
moment into the field direction is, using (2.34) and (2.33) given by 
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In most cases it is permissible to assume  

kTEe b (2.36) 
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for putting ee=4.810-10 e.s.u.,EE=300 v/cm.=1 e.s.u., bb=10-8 cm. 

distance between neighboring atoms in a molecule, and T=300oC 

(room temperature) one finds 
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.

Developing (2.35) in terms of ebE/kT, the average induced moment in 
the field direction is found to be  

(
1

2
)2eb

kT

cos
'

2 
E er (2.37) 

where eer' r' is a term similar to those considered in case (1) which has 
been added to account for the elastic displacement. Often two charges 
+e+e and --ee are strongly bound, forming an electric dipole =e=eaa,  where 
aa is the distance between them. The above case  (2) then leads to the 
same as that of a dipole  having two equilibrium positions with 
opposite dipole direction, but with equal energy in the absence of a 
field.  
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In a field E the energy of interaction between field and dipole is given 
by  

)(- μE (2.38) 

so that 22EcosEcos  is the energy between the two positions if   is the 
angle  and EE. This equivalent to equation  (2.30) if  

Actually putting an immobile charge --ee halfway between AA and BB turns 
case (2) into the present case. Clearly the induced moment must be 
the same for both cases because the charge --ee is immobile, and its 
distance from AA and BB is 11//22  bb, leading to a dipole . Introducing  
(2.39) into (2.37) yields for the induced moment in the field direction  

bμ e
2
1 (2.39) 

'
cos22

erE
kT




(2.40) 

In contrast to case (1) the electric moment (orientation polarization) 
now depends on temperature. A matter consisting of a great number of 
such dipoles will have a temperature-dependent dielectric permittivity 
in contrast to a substance in which all charges are bound elastically.  
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This means that in the dipolardipolar  casecase  thethe  entropyentropy  ofof  thethe  substancesubstance  

isis  decreaseddecreased  byby  thethe  fieldfield. 

In the case (1), the field exerts a force on elastically bound charge, 

thus shifting its equilibrium position. In case (2) this force of the field 

on the charge again leads to contribution of type (1) denoted by er' in 

equations (2.37) and (2.40). It would be wrong, however, to assume 

that the field by this force turns a dipole from one equilibrium position 

into another. This is affected in a more indirect way because the field 

slightly alters the probabilities of a jump of a dipole from one 

equilibrium position to another.  

TheThe  differencedifference  betweenbetween  thethe  actionaction  ofof  thethe  fieldfield  inin  thethe  twotwo  
casescases  ((11))  andand  ((22))  isis  essentialessential  forfor  thethe  wholewhole  theorytheory  ofof  
dielectricdielectric  permittivitypermittivity..  
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Internal field; Langeven function 

In dielectric twotwo  essentiallyessentially  differentdifferent  typestypes  ofof  interactioninteraction  forcesforces  shouldshould  
bebe  distinguisheddistinguished.. Forces due to chemical bonds, van der Waals 
attraction, repulsion forces, and others have all such short ranges that 
usually interaction between nearest neighbors only need be 
considered. Compared with these forces dipolardipolar  interactioninteraction  forcesforces  havehave  
aa  veryvery  longlong  rangerange..    

As it was shown above a polarized dielectric can be considered as a polarized dielectric can be considered as 
composed of small regions each having a certain dipole moment, and composed of small regions each having a certain dipole moment, and 
the total dipole moment of the body is the vector sum of the the total dipole moment of the body is the vector sum of the 
moments of these regions.moments of these regions. It is also known from macroscopic theory 
that the energy per unit volume of a macroscopic specimen depends energy per unit volume of a macroscopic specimen depends 
on its shapeon its shape. This implies that interaction between dipoles must be 
taken into account even at macroscopic distances. 

Due to the Due to the long rangelong range  of the dipolar forces an accurate calculation of of the dipolar forces an accurate calculation of 
the interaction of a particular dipole with all other dipoles of a the interaction of a particular dipole with all other dipoles of a 
specimen would be very complicated.specimen would be very complicated.   
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A very good approximation can be made by considering that the A very good approximation can be made by considering that the 
dipoles beyond a certain distance, say dipoles beyond a certain distance, say aamm  can be replaced by a can be replaced by a 
continuous mediumcontinuous medium, having the macroscopic dielectric properties of , having the macroscopic dielectric properties of 
the specimen.the specimen.  

Thus the dipole whose interaction with the rest of the specimen we Thus the dipole whose interaction with the rest of the specimen we 
are calculating may be considered as surrounded by a sphere of radius are calculating may be considered as surrounded by a sphere of radius   
aamm  containing a discrete number of particles, beyond which there is a containing a discrete number of particles, beyond which there is a 
continuous mediumcontinuous medium  To make this a good approximation To make this a good approximation the dielectric the dielectric 
properties of the whole region within the sphereproperties of the whole region within the sphere  should be equal to should be equal to 
those of a macroscopic specimen,those of a macroscopic specimen,  i.e. it should contain a sufficient i.e. it should contain a sufficient 
number of molecules to make fluctuations very small.number of molecules to make fluctuations very small.    

Lorentz's methodLorentz's method  for the treatment of dipolar interaction:for the treatment of dipolar interaction:  from a from a 

macroscopic specimen select a microscopic spherical region, which is macroscopic specimen select a microscopic spherical region, which is 

sufficiently large to have the same dielectric properties as a sufficiently large to have the same dielectric properties as a 

macroscopic specimen. macroscopic specimen. The interaction between the dipoles inside the The interaction between the dipoles inside the 

spherical region will then be calculated in an exact way, but for the spherical region will then be calculated in an exact way, but for the 

calculation of their interaction with the rest of the specimen the letter calculation of their interaction with the rest of the specimen the letter 

is considered as a continuous medium. is considered as a continuous medium.   
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We shall now investigate the dependence of the polarization on the 
electric fields working on a single molecule. For the induced 
polarization P we write:  

P E


N
k k i k

k

( ) (2.41) 

where NN is the number of particles per cm3,  the scalarscalar  polarizabilitypolarizability 

of a particle and EEii  the average field strength acting upon that particle. 

The index kk  refers to the k-th kind of particle. 

The fieldThe field  EEii  is called theis called the  internal field.internal field.  It is defined as the total It is defined as the total 

electric field at the position of the particle minus the field due to the electric field at the position of the particle minus the field due to the 

particle itself.particle itself.  The calculation of EEii  is one of the important problems 

associated with the theory of dielectrics. This calculation can be 

executed both in the continuum approach for the environment of the 

molecule and with the help of statistical mechanics.  

The orientation polarizationorientation polarization can be written as:  

P

N

k k
k

 (2.42) 

where k is  the value of the permanent dipole vector averagedpermanent dipole vector averaged over 
all orientations.  
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The value kk can be computed from the energy of the permanent 
dipole in the electric field. This energy is dependent on the part of the 
electric field tending to direct the permanent dipoles. This part of the 
field is called the directingdirecting  fieldfield  EEdd..  

The dependence of  k k onon  EEdd is computed from the energy of dipole in 
electric field as we did above:  

 cosE-W ddEμ (2.43) 

where  is the angle between the directions of EEdd and . Since Since WW  is the is the 

only part of the energy, which only part of the energy, which depends on the orientation of the dipoledepends on the orientation of the dipole, , 

the relative probabilities of the various orientations of the dipole the relative probabilities of the various orientations of the dipole 

depend on this energy depend on this energy W W according to according to Boltsmann’s distribution lawBoltsmann’s distribution law..  

From Boltzsmann's law  

Let us consider the average value of <cos<cos>.>. For a random distribution 

of the dipoles in matter we have <cos<cos>=0>=0, whereas <cos<cos>=1>=1 if all 

the dipoles have the same direction as EEdd.  
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L(a)L(a) is called Langeven functionLangeven function  

In Fig.2.3 the Langeven function 
L(a)L(a) is plotted against aa. L(a)L(a) 
has a limiting value 11, which was 
to be expected since this is the 
maximum of coscos. For small 
values of aa, <cos<cos>> is linear in 
EEdd:: 

10   if
33

1
cos  a

kT
d

E
a     


 (2.45) 

y=1/3 a 
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Fig.2.3 
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The approximation of equation  (2.45) may be used as long as  

a
E

d
kT

E
d

kT
  



0 1

0 1
.

.
. or 

At room temperature (T=300o K) this gives for a dipole of 44DD:  



kT
d

E
1.0

 = 3 105 v/cm  

For a value of   smaller than the large value of 4D, the value calculated 
for EEdd is even larger. In usual dielectric measurements,  EEdd   is much 
smaller than 105 v/cm and the use of (2.45) is allowed. 

From equation (2.45) it follows that:  

d
kT

cos Eμ
3

2


(2.46) 

Substituting this into (2.42) we  get:  

P

N

k
k





2

( )
d

E
k

(2.47) 

From the first lecture we had  
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We now substitute (2.41) and (2.47) into  (2.48) and find:  





PP=E 



4

1 (2.48) 

This is the fundamental equationfundamental equation is the starting point for 

expressing EEii  and EEd d as functions of the Maxwell field E and the 

dielectric constant . 












 kd

k
kik

k

k
kT

N )(
3

)(
4

1 2

EE=E






(2.49) 
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NonNon--polar dielctrics.  Lorentz's field.polar dielctrics.  Lorentz's field.  

ClausiusClausius--Massotti formula.Massotti formula.  
For a nonnon--polar systempolar system the fundamental equation for the dielectric 

permittivity (2.49) is simplified to: 









1

4
E = EN

k
k

k i k
( ) (2.50) 

In this case, only the relation between the internal field and the 

Maxwell field has to be determined.   

Therefore the polarization in the environment of a real cavity is not 
homogeneous, whereas the polarization in the environment of a virtual 
cavity remains homogeneous.  

The field in such a cavity differs from the field in a real cavity, given by 
(2.14), because in the latter case the polarization adjusts itself to the 
presence of the cavity.  

Let us use the LorentzLorentz  approachapproach in this case. He calculated the 
internal field in homogeneously polarized matter asas  thethe  fieldfield  inin  aa  
virtualvirtual  sphericalspherical  cavitycavity..  

0
12

3
EE







C (2.14) 
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The field in a virtual spherical cavity, which we call the Lorentz field EELL, 
is the sum of: 
1.1. thethe  MaxwellMaxwell  fieldfield  EE  causedcaused  byby  thethe  externalexternal  chargescharges  andand  byby  thethe  

apparentapparent  chargescharges  onon  thethe  outerouter  surfacesurface  ofof  thethe  dielectric,dielectric,  andand  

2.2. thethe  fieldfield  EEsphsph  inducedinduced  byby  thethe  apparentapparent  chargescharges  onon  thethe  boundaryboundary  ofof  
thethe  cavitycavity  (see(see  figfig..22..44))..  

 

 d 

+ 

+ 

E 

+ 

_ 

Fig.2.4Fig.2.4  

The field EEsphsph is calculated by 
subdividing the boundary in 
infinitesimally small rings 
perpendicular to the field 
direction. The apparent 
surface charge density on the 
rings is  --PcosPcos,, their surface 
is 22r2sinr2sin dd so that the 
total charge on each ring 
amounts to:  

 cosPdsinr-2de 2 (2.51) 

According to Coulomb's lawCoulomb's law, a charge element dede to the field 
component in the direction of the external field , given by:  
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dE
de

r


2
cos

(2.52) 

Combining (2.51) and (2.52), we find for the component of EEsphsph  in the 
direction of the external field :  

PPE
3

4
cossin2

0

2 




  dsph

(2.53) 

For the reasons of symmetry, the other components of EEsphsph  are zero, 
and we have with EELL==EE++EEsphsph: 

This is Lorentz's equation for the internal field.This is Lorentz's equation for the internal field.    

Substituting (2.54) into (2.50), we find: 

E E
L


 2

3
(2.54) 






k

kkN 






3

4

2

1 (2.55) 

This relation is generally called the ClausiusClausius--Massotti equation.Massotti equation.  
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For a pure compound it is reduced to: 








N

3

4

2

1 (2.56) 

From the ClausiusClausius--Mossotti equationMossotti equation for a pure compound, it follows 
that it is useful to define a molar polarization [molar polarization [PP]:]:  

[ ]P
M

d










1

2
(2.57) 

where dd  is the density and MM the molecular weight. When the 
ClausiusClausius--MossottiMossotti  equationequation is valid [P][P] is a constant for a given 
substance: 

[ ]P N
A


4

3


 (2.58) 

The ClausiusClausius--Mossotti equationMossotti equation can also be used for polar systems in 
high-frequency alternating fields:  













 

1

2

4

3
N

k k
k

(2.59) 
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Often this equation is used for still higher frequencies, where the 

atomic polarization too cannot follow the changes of the field. If 

according to Maxwell relation for the dielectric constant and the 

refractive index =n=n22, it is possible to write:  

in which  is the dielectric constant at a frequency at which the 

permanent dipoles (i.e. the orientation polarization) can no longer 

follow the changes of the field but where the atomic and electronic 

polarization are still the same as in static fields. 

n

n
N

k k

e

k

2

2

1

2

4

3




 


 (2.60) 


