Fourier Series

Periodic Functions

The Mathematic Formulation

Any function that satisfies

$$f(t) = f(t + T)$$

where *T* is a constant and is called the *period* of the function.

Example:

$$f(t) = \cos\frac{t}{3} + \cos\frac{t}{4}$$
 Find its period.

$$f(t) = f(t+T) \Longrightarrow \cos\frac{t}{3} + \cos\frac{t}{4} = \cos\frac{1}{3}(t+T) + \cos\frac{1}{4}(t+T)$$

Fact: $\cos \theta = \cos(\theta + 2m\pi)$

$$\frac{T}{3} = 2m\pi$$

$$\frac{T}{4} = 2n\pi$$

$$T = 6m\pi$$

$$T = 24\pi \text{ smallest } T$$

$$T = 8n\pi$$

Example:

$$f(t) = \cos \omega_1 t + \cos \omega_2 t$$
 Find its period.

$$f(t) = f(t+T) \implies \cos \omega_1 t + \cos \omega_2 t = \cos \omega_1 (t+T) + \cos \omega_2 (t+T)$$

$$\omega_1 T = 2m\pi$$
 $\omega_1 = \frac{m}{\omega_2} = \frac{m}{n}$
 $\omega_2 = \frac{m}{\omega_2}$ must be a rational number $\omega_2 T = 2n\pi$

Example:

$$f(t) = \cos 10t + \cos(10 + \pi)t$$

 \times

Is this function a periodic one?

$$\frac{\omega_1}{\omega_2} = \frac{10}{10 + \pi}$$
 not a rational number