Z-Transform of common
functions



Example — Right-Sided
Exponential Sequence (1)

B Consider x|n|=a"u|n]. Because it 1s nonzero only for n > 0,
this 1s an example of a right-sided sequence.
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For convergence of X(z), we require
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Thus, the ROC is the range of values of z for which |az"'<I1,
or equivalently, |z>|al. Inside the ROC, the infinite series
converges to
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Example — Right-Sided
Exponential Sequence (2)

The infinite sum becomes a simple rational function of z
inside the ROC.

Such a z-transform 1s determined to within a constant
multiplier by its zeros and its poles.

_ plane
For this example,

one zero: z=0 (plotted as o0);
one pole: z=a (plotted as X).

When |a|<1, the ROC includes
the unit circle.




Example — Left-Sided
Exponential Sequence

B Consider x|n|= —a"u|-n —1]. Because it 1s nonzero only for

n = —1, this 1s an example of a /leff-sided sequence.
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Notes on ROC

x[nl=a"uln] €«—> X(z)= l - = = 'z > al
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B As can be seen from the two examples, the algebraic
expression or pole-zero pattern does not completely
specifty the z-transform of a sequence, i.e., the ROC must
also be specified.



