
 

Frequency Response Method 
 



Knowledge Before 
Studying Nyquist Criterion 
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unstable if there is any pole on RHP (right half plane) 
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poles of G(s)H(s) and 1+G(s)H(s) are the same 

zero of 1+G(s)H(s) is pole of T(s) 

Characteristic equation: 

Open-loop system: 

Closed-loop system: 
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Zero – 1,2,3,4 

 

 

Poles – 5,6,7,8 

Zero – a,b,c,d 

 

 

Poles – 5,6,7,8 

Zero – ?,?,?,? 

 

 

Poles – a,b,c,d 

To know stability, we have to know a,b,c,d 



Stability from Nyquist plot 

 From a Nyquist plot, we can tell a 

number of closed-loop poles on the 

right half plane. 

– If there is any closed-loop pole on the right 

half plane, the system goes unstable. 

– If there is no closed-loop pole on the right 
half plane, the system is stable. 



Nyquist Criterion 

Nyquist plot is a plot used to verify stability 
of the system. 
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mapping all points (contour) from one plane to another 
by function F(s). 

mapping contour 
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• Pole/zero inside the 

contour has 360 deg. 
angular change. 

• Pole/zero outside 

contour has 0 deg. 

angular change. 

• Move clockwise 

around contour, zero 

inside yields rotation 

in clockwise, pole 

inside yields rotation 

in counterclockwise 

 



Characteristic equation  

     N = P-Z 

  N = # of counterclockwise direction about the origin 

P = # of poles of characteristic equation inside contour 

 = # of poles of open-loop system 

z = # of zeros of characteristic equation inside contour 

   = # of poles of closed-loop system 
 

    Z = P-N 
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Characteristic equation 
• Increase size of the contour to cover the 

right half plane 

 

 

 

 

 

 

• More convenient to consider the open-loop 
system (with known pole/zero) 



‘Open-loop system’ 

 Mapping from characteristic equ. to open-loop 

system by shifting to the left one step 

 

       Z = P-N 

 
Z = # of closed-loop poles inside the right half plane 

P = # of open-loop poles inside the right half plane 
N = # of counterclockwise revolutions around -1  
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Properties of Nyquist plot 
 If there is a gain, K, in front of open-loop 

transfer function, the Nyquist plot will 

expand by a factor of K. 



Nyquist plot example 
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• Open loop system has pole at 

2 

 

 

• Closed-loop system has pole 

at 1 

 

 

• If we multiply the open-loop 

with a gain, K, then we can 

move the closed-loop pole’s 
position to the left-half plane 
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Nyquist plot example (cont.) 

• New look of open-loop system: 
 
 

• Corresponding closed-loop system:  

 

 

• Evaluate value of K for stability 

2
)(



s

K
sG

)2()(1

)(




 Ks

K

sG

sG

2K



Adjusting an open-loop gain to guarantee stability 

Step I: sketch a Nyquist Diagram 
Step II: find a range of K that makes the system stable! 



How to make a Nyquist plot? 

 Easy way by Matlab 

– Nyquist: ‘nyquist’ 

– Bode: ‘bode’ 



Step I: make a Nyquist plot 

• Starts from an open-loop transfer function (set 

K=1) 

• Set                   and find frequency response 

– At dc, 

– Find       at which the imaginary part equals zero   

 

 

js 

00  s
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11,0
Need the imaginary term = 0, 

31.1
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Substitute              back in to the transfer function 

And get                              
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At dc, s=0,  

At imaginary part=0 



Step II: satisfying stability condition 

• P = 2, N has to be 2 to guarantee stability 

• Marginally stable if the plot intersects -1 

• For stability, 1.33K has to be greater than 1  

 

    K > 1/1.33 

 

   or K > 0.75 



Example 
Evaluate a range of K that makes the system stable 
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At 6,0 the imaginary part = 0 

Plug              back in the transfer function 
and get G = -0.05 

Step I: find frequency at which imaginary part = 0 

js Set   
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Step II: consider stability condition 

• P = 0, N has to be 0 to guarantee stability 

• Marginally stable if the plot intersects -1 

• For stability, 0.05K has to be less than 1  

 

    K < 1/0.05 

 

   or   K < 20 



Gain Margin and Phase Margin 

Gain margin is the change in open-loop gain (in dB), 

required at 180 of phase shift to make the closed-loop 

system unstable. 

 

Phase margin is the change in open-loop phase shift, 

required at unity gain to make the closed-loop 

system unstable. 

GM/PM tells how much system can tolerate 

before going unstable!!!     



GM and PM via Nyquist plot 



GM and PM via Bode Plot 
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•The frequency at which 

the phase equals 180 

degrees is called the 

phase crossover 

frequency  

 

•The frequency at which 

the magnitude equals 1 is 

called the gain crossover 

frequency 

MG
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gain crossover frequency phase crossover frequency 



Example 

Find Bode Plot and evaluate a value of K 

that makes the system stable 
The system has a unity feedback  
with an open-loop transfer function 
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First, let’s find Bode Plot of G(s) by assuming  
that K=40 (the value at which magnitude plot 

starts from 0 dB) 



At phase = -180, ω = 7 rad/sec, magnitude = -20 dB 



• GM>0, system is stable!!! 

• Can increase gain up 20 dB without 

causing instability (20dB = 10) 

• Start from K = 40 

• with K < 400, system is stable 



Closed-loop transient and closed-loop 

frequency responses 
‘2nd system’ 
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Magnitude Plot of closed-loop system 

Damping ratio and closed-loop frequency response 
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          = frequency at which magnitude is 3dB down 

 

 from value at dc (0 rad/sec), or             . 

Response speed and closed-loop frequency response 
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Find          from  
Open-loop Frequency Response 

BW

Nichols Charts 

From open-loop frequency response, we can find  
          at the open-loop frequency that the magnitude 
lies between -6dB to -7.5dB (phase between -135 to -225)  

BW



Relationship between 

damping ratio and phase margin 
of open-loop frequency response 
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Phase margin of open-loop frequency response 

Can be written in terms of damping ratio as following 



Example 
Open-loop system with a unity feedback has a bode plot  
below, approximate settling time and peak time 

         = 3.7 BW

PM=35 
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Solve for PM = 35  

43.1

244)21(
1

5.5

244)21(
4

242

2

242




















BW

p

BW

s

T

T


