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Basic Vector Calculus 
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• The study of Maxwell’s equations, devised in 1863 to 
represent the relationships between electric and magnetic 
fields in the presence of electric charges and currents, 
whether steady or rapidly fluctuating, in a vacuum or in 
matter. 

 

• The equations represent one of the most elegant and 
concise way to describe the fundamentals of electricity and 
magnetism. They pull together in a consistent way earlier 
results known from the work of Gauss, Faraday, Ampère, 
Biot, Savart and others. 

 

• Remarkably, Maxwell’s equations are perfectly consistent 
with the transformations of special relativity. 

What is Electromagnetism? 



Maxwell’s Equations 

Relate Electric and Magnetic fields generated by charge and 
current distributions. 

E = electric field 

D = electric displacement 

H = magnetic field 

B = magnetic flux density 

= charge density 

j = current density 

0 (permeability of free space) = 4 10-7  

0 (permittivity of free space) = 8.854 10-12  

c (speed of light) = 2.99792458 108 m/s t
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Equivalent to Gauss’ Flux Theorem: 

 

 

The flux of electric field out of a closed region is proportional to 
the total electric charge Q enclosed within the surface. 

A point charge q generates an electric field 

 

 

 

 

 

Maxǁell’s ϭst Equation  
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Area integral gives a measure of the net charge 
enclosed; divergence of the electric field gives the density 
of the sources. 
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Maxǁell’s Ϯnd Equation  

Gauss’ law for magnetism:   

  

 

The net magnetic flux out of any 
closed surface is zero. Surround a 
magnetic dipole with a closed surface. 
The magnetic flux directed inward 
towards the south pole will equal the 
flux outward from the north pole.  

If there were a magnetic monopole 
source, this would give a non-zero 
integral.  
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Gauss’ law for magnetism is then a statement that
 There are no magnetic monopoles 



Equivalent to Faraday’s Law of Induction: 

 

 
 
 
 
(for a fixed circuit C) 

The electromotive force round a 

circuit                   is proportional to the 

rate of change of flux of magnetic 

field,                   through the circuit.  

Maxwell’s 3rd Equation  
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Faraday’s Law is the basis for electric 
generators. It also forms the basis for 
inductors and transformers. 



Maxwell’s 4th Equation 
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Originates from Ampère’s (Circuital) Law : 

 

 

 

Satisfied by the field for a steady line current (Biot-Savart Law, 
1820): 
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Need for Displacement 

Current 

• Faraday: vary B-field, generate E-field 

• Maxwell: varying E-field should then produce a B-field, but not covered by Ampèƌe’s 
Law. 

Surface 1 Surface 2 

Closed loop 

Current I 

 Apply Ampère to surface 1 (flat disk): line 

integral of B = 0I 

 Applied to surface 2, line integral is zero 

since no current penetrates the deformed 

surface. 

 In capacitor,                 , so 

 

 Displacement current density is 
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Consistency with Charge 

Conservation 
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Charge conservation:  
Total current flowing out of a region 

equals the rate of decrease of charge 

within the volume.  

 

Fƌoŵ Maxǁell’s eƋuatioŶs:               
Take divergence of (modified) Ampèƌe’s 
equation 
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Charge conservation is implicit in Maxwell’s Equations 



Maxǁell’s Equations in 

Vacuum 
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In vacuum 

 

 

Source-free equations: 

 

 

 

Source equations  

  

Equivalent integral forms 

(useful for simple geometries) 
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Example: Calculate E from B 
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Lorentz Force Law 

• SuppleŵeŶt to Maxǁell’s eƋuatioŶs, giǀes foƌce oŶ a chaƌged paƌticle 
moving in an electromagnetic field: 

 

• For continuous distributions, have a force density 

 

• Relativistic equation of motion 

 

– 4-vector form: 

 

– 3-vector component: 
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Motion of charged particles in constant 

magnetic fields 

1. Dot product with v: 
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2. Dot product with B: 
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Motion in constant magnetic field 
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Constant magnetic field 
gives uniform spiral about B 

with constant energy. 
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Motion in constant Electric Field 

Solution of     E
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Constant E-field gives uniform acceleration in straight line 
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Potentials 

• Magnetic vector potential: 

 

• Electric scalar potential: 

 

 

 

 

• Lorentz Gauge: 
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Electromagnetic 4-Vectors 

Α,
1

,
1

0
1

42














 








A
ctc

A
tc


Lorentz 

Gauge 

4-gradient 4  4-potential A 

Current 
4-vector 



000 where),(),( 



jcvcVJ

vj




Continuity 
equation 
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Charge-current 
transformations 
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Relativistic Transformations 

• 4-potential vector: 

 

• Lorentz transformation 

 

 

 

 

• Fields: 
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Example: Electromagnetic Field of a Single 

Particle 

 Charged particle moving along x-axis of Frame F 

 

 

 

 P has  

 

 In F, fields are only electrostatic (B=0), given by 
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Origins coincide 
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Transform to laboratory frame F: 
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At non-relativistic energies,  ≈ 1, restoring the Biot-
Savart law: 

 



Electromagnetic Energy  

• Rate of doing work on unit volume of a system is 

 

 

• Substitute for j fƌoŵ Maxǁell’s eƋuatioŶs aŶd ƌe-arrange into the form 
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Poynting vector 
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electric + 
magnetic energy 

densities of the 

fields 

Poynting vector 
gives flux of e/m 

energy across 

boundaries 

Integrated over a volume, have energy conservation law: rate 
of doing work on system equals rate of increase of stored 
electromagnetic energy+ rate of energy flow across 
boundary. 



Review of Waves 

 1D wave equation is                    with general 
solution 

 

 Simple plane wave:  
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Wavelength is  

Frequency is 



2





Superposition of plane waves. While 
shape is relatively undistorted, pulse 
travels with the group velocity 

Phase and group velocities 
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Plane wave                    has constant 
phase                      at peaks 

 xkt sin
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group velocity/GroupVelocity.html


Wave packet structure 

• Phase velocities of individual plane waves making up 

the wave packet are different,  

• The wave packet will then disperse with time   



Electromagnetic waves 
 Maxwell’s equations predict the existence of electromagnetic waves, later 

discovered by Hertz. 

 No charges, no currents: 
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Nature of Electromagnetic Waves 
 A general plane wave with angular frequency  travelling in the direction 

of the wave vector k has the form 

 

 

 Phase                = 2  number of waves and so is a Lorentz invariant. 

 Apply Maxwell’s equations 
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Plane Electromagnetic Waves 
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Reminder: The fact that                        is an 

invariant tells us that 

                  

is a Lorentz 4-vector, the 4-Frequency vector. 

Deduce frequency transforms as 
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Waves in a Conducting Medium 

 (Ohm’s Law) For a medium of conductivity ,                                     

 Modified Maxwell:                                                     
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Attenuation in a Good Conductor 

   
   

  0since

 withCombine

2

2













Ekik

EiEkkEk

EiHkEkk

HEk
t

B
E




















EiEHki


 

For a good conductor D >> 1,    ikik  1
2

, 2 

 

depth-skin  theis
2

where

1
1

,expexpis form Wave






























  ik

xx
ti copper.mov        water.mov 

copper.mov
water.mov


Charge Density in a Conducting Material 

 Inside a conductor (Ohm’s law) 

 Continuity equation is 

 

 

 

 Solution is 
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So charge density decays exponentially with time. For a very 
good conductor, charges flow instantly to the surface to form a 
surface charge density and (for time varying fields) a surface 
current. Inside a perfect conductor () E=H=0        



Maxwell’s Equations in a Uniform 
Perfectly Conducting Guide 
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Hollow metallic cylinder with perfectly 

conducting boundary surfaces 

Maxwell’s equations with time dependence exp(it) are: 
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 is the propagation constant 

Can solve for the fields completely 

in terms of Ez and Hz 



Special cases 

• Transverse magnetic (TM modes): 

– Hz=0 everywhere, Ez=0 on cylindrical  boundary 

 

• Transverse electric (TE modes): 

– Ez=0 everywhere,                  on cylindrical boundary 

 

• Transverse electromagnetic (TEM modes): 

– Ez=Hz=0 everywhere 

– requires 
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A simple model: “Parallel Plate Waveguide” 
Transport between two infinite conducting plates (TE01 mode): 
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Propagation constant is  
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Cut-off frequency, c 

 c gives real solution for , so 
attenuation only. No wave propagates: cut-
off modes. 

 c gives purely imaginary solution for , 
and a wave propagates without attenuation. 

 

 

 

 For a given frequency  only a finite number 
of modes can propagate. 
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Propagated Electromagnetic Fields 
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Phase and group velocities in the simple 

wave guide 
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Calculation of Wave Properties 

• If a=3 cm, cut-off frequency of lowest order mode is 

 

 

• At 7 GHz, only the n=1 mode propagates and 
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Flow of EM energy along the simple 

guide 
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Fields (c) are: 

Time-averaged energy: 
Total e/m energy 

density 
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Poynting Vector 

Poynting vector is    xyzy HEHEHES  ,0,
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Integrate over x: 
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Electromagnetic energy is transported down the waveguide 

with the group velocity 
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