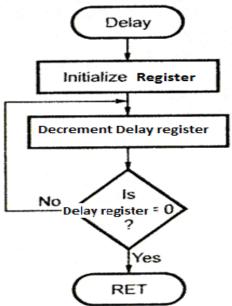

Unit 3 LECTURE 3

Counter and Time Delays

- A counter is designed simply by loading appropriate number into one of the registers and using INR or DNR instructions.
- Loop is established to update the count.


• Each count is checked to determine whether it has reached final number; if not, the loop is

repeated.

Time Delay

- Procedure used to design a specific delay.
- A register is loaded with a number, depending on the time delay required and then the register is decremented until it reaches zero by setting up a loop with conditional jump instruction.
- Time delay using One register:

Label Opcode Operand Comments T states

DCR C ;Decrement C 4
LOOP: JNZ LOOP ;Jump back to decrement C

Clock frequency of the system = 2 MHz

Clock period= $1/T=0.5 \mu s$

Time to execute MVI = 7 T states * 0.5= 3.5 μ s

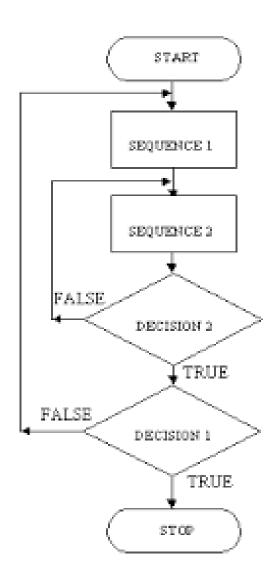
Time Delay in Loop TL= T*Loop T states * N10 = 0.5 * 14* 255 = 1785 µs = 1.8 ms

N10 = Equivalent decimal number of hexadecimal count loaded in the delay register

TLA= Time to execute loop instructions =TL -(3T states* clock period)=1785-1.5=1783.5 µs

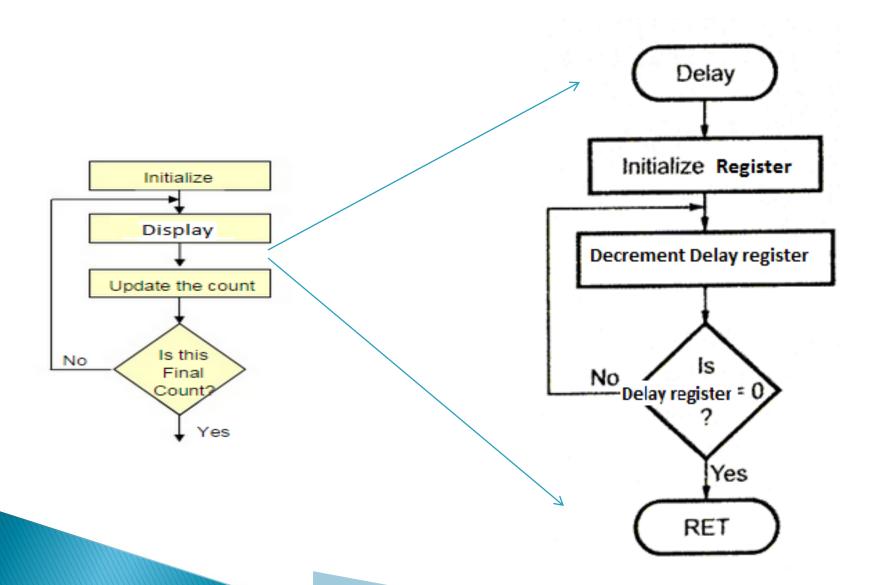
Time Delay using a register pair

Lavei	Opcode	Operanu	Comments	ו אומובא
	LXI	В,2384Н	Load BC with 16-bit count	10
LOOP:	DCX	В	Decrement BC by 1	6
	MOV	A,C	Place contents of C in A	4
	ORA	В	OR B with C to set Zero flag	4
	JNZ	LOOP	if result not equal to 0,	10 /7
			jump back to loop	


Time Delay in Loop TL= T*Loop T states * N10

= 0.5 * 24 * 9092

= 109 ms


Time Delay using a LOOP within a LOOP

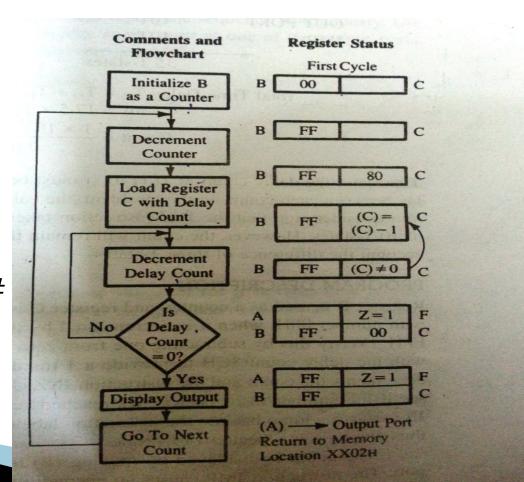
	MVI B,38H	7T	Delay in Loop TL1=1783.5 µs
LOOP2:	MVI C,FFH	7 T	Delay in Loop TL2= (0.5*21+TL1)*56
LOOP1:	DCR C	4T	=100.46ms
	JNZ LOOP1	10/7 T	
	DCR B	4 T	
	JNZ LOOP 2	10 /7T	

Flowchart for time delay with two loops

Flowchart of a counter with time delay

Illustrative Program: Hexadecimal Counter

Write a Program to count continuously from FFH to 00H using register C with delay count 8CH between each count and display the number at one of the output ports.


MVI B,00H

NEXT: DCR B

MVI C,8CH

DELAY: DCR C

JNZ DELAY MOV A,B OUT PORT# JMP NEXT

Illustrative Program: Zero to nine (Modulo

ten) Counter

START: MVI B,00H

MOV A,B

DSPLAY: OUT PORT#

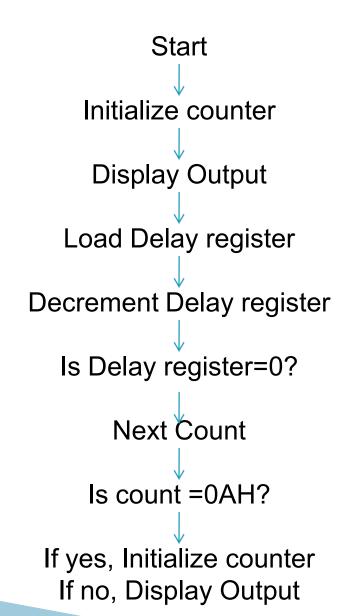
LXI H,16-bit

LOOP: DCX H

MOV A,L

ORAH

JNZ LOOP


INR B

MOV A,B

CPI 0AH

JNZ DSPLAY

JZ START

Illustrative Program: Generating pulse waveforms

MVI D, AAH
X: MOV A, D
RLC
MOV D, A
ANI 01H
OUT PORT1
MVI B, COUNT

Y: DCR B JNZ Y JMP X •Generates a continuous square wave with the period of 500 Micro Sec. Assume the system clock period is 325ns, and use bit D0 output the square wave.
•Delay outside loop: T0=46 T

•Delay outside loop: T0=46 T states * 325=14.95 micro sec.

•Loop delay: TL=4.5 micro sec

•Total Td=To+TL

Count=34 H

Debugging Counter and time delay programs

- It is designed to count from 100(base 10) to 0 in Hex continuously with a 1 second delay between each count.
- The delay is set up using two loops. The inner loop is executed to provide approximately 100ms delay and is repeated 10 times, using outer loop to provide a total delay of 1 second.
- The clock period of system is 330ns.

MVI A, 64H	7
X: OUT PORT1	10
Y:MVI B, 10H	7
Z:LXI D, X	10
DCX D	6
NOP	4
NOP	4
MOV A, D	4
ORA E	4
JNZ Z	10/7
DCR B	4
JZ Y	10/7
DCR A	4
CPI 00H	7
JNZ X	10/7

Delay in loop1=32T X count x 330x10⁻⁹ 100ms =32T X count x 330x10⁻⁹ Count=9470