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Review of Probability and Random Processes
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/ Importance of Random Processes \

« Random variables and processes talk about quantities and
signals which are unknown 1n advance

* The data sent through a communication system 1s modeled
as random variable

» The noise, interference, and fading introduced by the
channel can all be modeled as random processes

« Even the measure of performance (Probability of Bit Error)
1s expressed in terms of a probability
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Random Events

 When we conduct a random experiment, we can use set
notation to describe possible outcomes

« Examples: Roll a six-sided die
Possible Outcomes: S =141,2,3,4,5,6}
 An event is any subset of possible outcomes: 4 = {1, 2}
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Random Events (continued)

The complementary event: A=S—A= {3,4,5,6}
The set of all outcomes in the certain event: S

The null event: @
Transmitting a data bit 1s also an experiment
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/ Probability

e The probability P(A) i1s a number which measures the
likelihood of the event A

Axioms of Probability

No event has probability less than zero: P(4)>0
P(A)<1 and P(A)=1<=A4=S

Let A and B be two events such that: ANB=¢

Then: P(AU B)= P(A)+ P(B)

All other laws of probability follow from these axioms
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Relationships Between Random Events

« Joint Probability: P(AB)=P(ANB)
- Probability that both A and B occur

P(AB)

. » e POAL B —
Conditional Probability: (4| B) P(B)

- Probability that A will occur given that B has occurred
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Relationships Between Random Events

 Statistical Independence:
- Events A and B are statistically independent if:
P(AB)=P(A)P(B)
- If A and B are independence than:
P(A|B)=P(A) and P(B|A)=P(B)
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/ Random Variables \

* A random variable X(S) 1s a real valued function of the
underlying even space: § € .8

* A random variable may be:
-Discrete valued: range is finite (€.g.{0,1}) or countable
infinite (e.g.{1,2,3.....})
-Continuous valued: range 1s uncountable infinite (e.g. R)
* A random variable may be described by:
- A name: X
- Itsrange: X € R

\—A description of its distribution /




/ Cumulative Distribution Function

 Definition: F,(x)=F(x)=P(X <Xx)

* Properties:

— F, (x) 1s monotonically nondecreasing
— F(—0)=0

—> F'(o0) =1

5 P(a< X <b)=F(b)-F(a)

 While the CDF defines the distribution of a random
variable, we will usually work with the pdf or pmf

* In some texts, the CDF is called PDF (Probability
Distribution function)

/
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/ Probability Density Function

dF, (x) or  P(x)= dF(x)
dx dx

* Definition: P, (x)=

 Interpretations: pdf measures how fast the CDF 1s

a particular value
* Properties:

P(x)20 | P()dx=1

\P(a <X <b)=[ P(x)dx

increasing or how likely a random variable 1s to lie around

™
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/ Expected Values

« Expected values are a shorthand way of describing a
random variable

* The most important examples are:

-Mean: FE(X)=m_= I xp(x)dx

-Variance: E([X —m, ]2) = I (x— mx)zp(x)dx

-
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/ Probability Mass Functions (pmf) \

» A discrete random variable can be described by a pdf if we
allow impulse functions

* We usually use probability mass functions (pmf)
p(x) = P(X =Xx)

e Properties are analogous to pdf
p(x)=0

D p(x) =1

\ P(aSXSb)zip(x) /
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Some Useful Probability Distributions

* Binary Distribution

x=1

1— =0
p<x>={ P
P

» This 1s frequently used for binary data
Mean: E(X)=p

* Variance: O X2 =p(l-p)

/
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/ Some Useful Probability Distributions \
(continued)

Let ¥ = ZXZ. where {X,,i=1,..,n} areindependent
=

binary random variables with

1— =0
p<x>={ b
P

x=1

n
Then py(y)=( ]py(l—p)” y=0,L...,n
y

e Mean: E(X)=np

\Variance: 0X2 — np(l— p) /
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Some Useful Probability Distributions

(continued)
e Uniform pdf:
: a<x<h
p(x)=4b—-a
0 otherwise

e Jti1s a continuous random variable

e Mean: E(X) :%(a+b)

!ariance: o, = é (a—b)’

/
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Some Useful Probability Distributions
(continued)

| PN
* Gaussian pdf: g2

p(X) - \EO'

* A gaussian random variable is completely determined by
its mean and variance
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The Q-function

O(x) = [ dr,  x=0

™

» The function that is frequently used for the area under the
tail of the gaussian pdf 1s the denoted by Q(x)

» The Q-function 1s a standard form for expressing error
probabilities without a closed form

/
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KA Communication System with Guassian noiﬁ

Se{ia} R=S+N

<
Transmitter ;/\\; " Receiver —— R 07
>
NI “
» The probability that the receiver will make an error 1s
© —(x+az)2
2072 a
P(R>O\S:—a):j e " dx=0| —
0

J27a, Gn/
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Random Processes

A random variable has a single value. However, actual
signals change with time

Random variables model unknown events
Random processes model unknown signals

A random process 1s just a collection of random variables

If X(t) 1s a random process, then X(1), X(1.5) and X(37.5)
are all random variables for any specific time t
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Terminology Describing Random Processes

A stationary random process has statistical properties
which do not change at all time

A wide sense stationary (WSS) process has a mean and
autocorrelation function which do not change with time

A random process 1s ergodic if the time average always
converges to the statistical average

Unless specified, we will assume that all random processes
are WSS and ergodic
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Description of Random Processes

« Knowing the pdf of individual samples of the random
process 1s not sufficient.

- We also need to know how individual samples are
related to each other

« Two tools are available to decribe this relationship
- Autocorrelation function
- Power spectral density function
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/ Autocorrelation

with time

X(1) and X(100000)
« The autocorrelation function quantifies this

e For a WSS random process,

Oy (T) = E[X(I)X(t -I-T)]

\Note that Power = ¢, (0)

« Autocorrelation measures how a random process changes

e Intuitively, X(1) and X(1.1) will be strongly related than

™
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Power Spectral Density

* @( f) tells us how much power is at each frequency
 Wiener-Khinchine Theorem: O(f)=Fi{¢(r)}

™

- Power spectral density and autocorrelation are a

Fourier Transform pair

* Properties of Power Spectral Density

S D(f)>0
= O(f) =D(-f)

o0

— Power = j O(f)df

—00
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Gaussian Random Processes

e (Gaussian random processes have some special properties
- If a gaussian random process 1s wide-sense stationary,
then 1t is also stationary
- If the mnput to a linear system 1s a Gaussian random
process, then the output 1s also a Gaussian random
process
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e Qutput:

x(1)

-

Linear systems

« Input: x(7)
« Impulse Response: /i(¢)

y(t)

h(t)

— y(?)

™
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Computing the Output of Linear Systems \

e Deterministic Signals:

- Time domain: y(¢) = A(?) * x(¢)

- Frequency domain: Y(f)=F{y()} =X(f)H(f)

« For a random process, we can still relate the statistical
properties of the input and output signal

- Time domain: ¢Y (Z') = ¢X (T ) * h(T) * h(_f)

- Frequency domain: @, (f)=D . (f)|H(f) 2/
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