DC Choppers

Introduction

- Chopper is a static device.
- A variable dc voltage is obtained from a constant dc voltage source.
- Also known as dc-to-dc converter.
- Widely used for motor control.
- Also used in regenerative braking.
- Thyristor converter offers greater efficiency, faster response, lower maintenance, smaller size and smooth control.

Choppers are of Two Types

- Step-down choppers.
- Step-up choppers.
 - In step down chopper output voltage is less than input voltage.
 - In step up chopper output voltage is more than input voltage.

Principle Of Step-down Chopper

- A step-down chopper with resistive load.
- The thyristor in the circuit acts as a switch.
- When thyristor is ON, supply voltage appears across the load
- When thyristor is OFF, the voltage across the load will be zero.

Average Output Voltage

$$V_{dc} = V \left(\frac{t_{ON}}{t_{ON} + t_{OFF}} \right)$$

$$V_{dc} = V\left(\frac{t_{ON}}{T}\right) = V.d$$

$$but \left(\frac{t_{ON}}{t}\right) = d = \text{duty cycle}$$

Average Output Current

$$\begin{split} I_{dc} &= \frac{V_{dc}}{R} \\ I_{dc} &= \frac{V}{R} \bigg(\frac{t_{ON}}{T} \bigg) = \frac{V}{R} d \end{split}$$

RMS value of output voltage

$$V_O = \sqrt{\frac{1}{T} \int_0^{t_{ON}} v_o^2 dt}$$

But during t_{ON} , $v_o = V$

Therefore RMS output voltage

$$V_O = \sqrt{\frac{1}{T} \int_0^{t_{ON}} V^2 dt}$$

$$V_O = \sqrt{\frac{V^2}{T}} t_{ON} = \sqrt{\frac{t_{ON}}{T}} . V$$

$$V_O = \sqrt{d} . V$$

Output power
$$P_O = V_O I_O$$

$$I_O = \frac{V_O}{R}$$

: Output power

$$P_O = \frac{V_O^2}{R}$$

$$P_O = \frac{dV^2}{R}$$

Effective input resistance of chopper

$$R_i = \frac{V}{I_{dc}}$$

$$R_i = \frac{R}{d}$$

The output voltage can be varied by varying the duty cycle.

Methods Of Control

- The output dc voltage can be varied by the following methods.
 - Pulse width modulation control or constant frequency operation.
 - Variable frequency control.

Pulse Width Modulation

- t_{ON} is varied keeping chopping frequency 'f' & chopping period 'T' constant.
- Output voltage is varied by varying the ON time t_{ON}

